

Scenarios and models for exploring future trends of biodiversity and ecosystem services changes

Contract ENV.G.1/ETU/2008/0090r

FINAL APPROVED REPORT: 27th August 2009

eco

TERRA

Institute for European Environmental Policy (IEEP)

G.M. Tucker, A.J. McConville, K. McCoy & P. ten Brink

Together with

Alterra, Wageningen UR L. Braat & E. Arets

Ecologic I. Bräuer, H. Gerdes, M. Grunig & K. Beese

Netherlands Environmental Assessment Agency

GENINGENUR

Netherlands Environmental Assessment Agency (PBL) T. Kram, J. Bakkes, M.M.P. van Oorschot, N. Heuermann & D.P. van Vuuren

United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) M.Walpole, J.P.W. Scharlemann, & F.Kershaw

Project coordinator and contact person:

Dr Graham Tucker Head of Biodiversity Programme Institute for European Environmental Policy 15 Queen Anne's Gate London SW1H 9BU United Kingdom

Tel (direct): +44 (0)207 340 2688 Fax: +44 (0)207 799 2600 E-mail: <u>gtucker@ieep.eu</u>

Recommended citation:

IEEP, Alterra, Ecologic, PBL and UNEP-WCMC (2009) *Scenarios and models for exploring future trends of biodiversity and ecosystem services changes*. Final report to the European Commission, DG Environment on Contract ENV.G.1/ETU/2008/0090r. Institute for European Environmental Policy, Alterra Wageningen UR, Ecologic, Netherlands Environmental Assessment Agency, United Nations Environment Programme World Conservation Monitoring Centre.

Final Report edited by:

G. Tucker and A.J. McConville Institute for European Environmental Policy

Chapter authorship:

Chapter 2:

N. Heuermann¹, J. Bakkes¹, F. Kershaw², T. Kram¹, M. van Oorschot¹, J. Scharlemann², M. Walpole² and F.Kirshaw²¹ Netherlands Environmental Assessment Agency

² United Nations Environment Programme World Conservation Monitoring Centre

Chapter 3:

G. Tucker, A.J. McConville, P. ten Brink and K. McCoy Institute for European Environmental Policy

Chapter 4:

L. Bratt¹, E. Arets¹, J. Scharlemann² and M. Walpole²

¹ Alterra, Wageningen UR

² United Nations Environment Programme World Conservation Monitoring Centre

Chapter 5:

I. Bräuer¹, H. Gerdes¹, G. Tucker², A.J. McConville², P. ten Brink² ¹Ecologic

² Institute for European Environmental Policy

Chapter 6:

P. ten Brink¹, L. Braat², N. Heuermann³, J. Bakkes³, F. Kershaw³, T. Kram³, M. van Oorschot³,

J. Scharlemann⁴, M. Walpole⁴, G. Tucker¹, A. J. McConville¹

¹ Institute for European Environmental Policy

² Alterra, Wageningen UR

³ Netherlands Environmental Assessment Agency

⁴ United Nations Environment Programme World Conservation Monitoring Centre

TABLE OF CONTENTS

E	EXECUTIVE SUMMARY7				
1	INTE	RODUCTION	11		
	1.1	BACKGROUND AND AIMS OF THE STUDY	11		
	1.2	STRUCTURE OF THIS REPORT	13		
2	IDEN	NTIFICATION AND OVERVIEW OF AVAILABLE MODELS	14		
	2.1	DESCRIPTION OF TASK 1 FROM THE TOR	. 14		
	2.2	INTRODUCTION	15		
	2.2.1	Definitions/logical background	. 15		
	2.2.2	Structure of this review	. 16		
	2.2.3	Ecosystem services	. 17		
	2.2.4	Factors affecting the amount of ecosystem service provision	. 22		
	2.3	REVIEW OF MODELS	23		
	2.3.1	Model selection and typology	. 23		
	2.3.2	Analysis of selected models	. 31		
	2.4	REVIEW OF SCENARIOS	41		
	2.4.1	Selection of scenarios	. 41		
	2.4.2	Review of scenarios	.41		
	2.5	INSIGHTS, GAPS, STRENGTHS AND WEAKNESSES OF THE VARIOUS APPROACHES	46		
	2.3.1	Models	. 40		
	2.3.2	General Conclusions and Recommendations	52		
	2.0	GENERAL CONCLUSIONS AND RECOMMENDATIONS			
3	OVE	RVIEW OF RESULTS FROM MODELS FOR THE LOSS OF BIODIVERSITY AND	_		
E	COSYST	EMS AND THEIR SERVICES	. 57		
	3.1	DESCRIPTION OF TASK 2 FROM THE TOR	57		
	3.2	INTRODUCTION	57		
	3.2.1	Purpose of this chapter	. 57		
	3.2.2	Description of the assessments used in the report	. 57		
	3.3	METHODOLOGY AND STRUCTURE OF THIS CHAPTER	58		
	3.4	DRIVERS OF CHANGES IN BIODIVERSITY AND ECOSYSTEMS	59		
	3.5	TERRESTRIAL BIODIVERSITY	61		
	3.5.1	Progress on achieving goals	. 61		
	3.5.2	Pressures	. 64		
	3.5.3	Impact of policy interventions	. 69		
	3.3.4	Gaps and limitations of the assessments	. 72		
	3.0	Prograss in achieving policy coals	/ 3		
	3.0.1	Prossures	.75 71		
	363	Impact of policy interventions	77		
	3.6.4	Gaps and limitations of the assessments	. 78		
	3.7	FRESHWATER BIODIVERSITY	78		
	3.8	ECOSYSTEM SERVICES	79		
	3.8.1	Provisioning services	. 80		
	3.8.2	Regulating ecosystem services	. 83		
	3.8.3	Supporting services	. 85		
	3.8.4	Gaps or limitations in the models	. 85		
	3.9	COSTS OF BIODIVERSITY AND ECOSYSTEM SERVICE LOSS	86		
	3.9.1	Cost of policy inaction	. 86		
	3.9.2	Cost of policy action	. 87		
	3.10	POLICY OPTIONS	87/		
	3.10.	I Improving governance for agricultural technology transfer	. 88		
	3.10.2	Diotectinology and bloalversity Ecosystem based approach to fisheries management	. 00 . 00		
	3 11	Concernsions	00. 88		
	5.11				
4	ASSI	ESSMENT OF IMPACT OF KEY ASSUMPTIONS	90		

	4.1	DESCRIPTION OF TASK 3 FROM THE TOR	
	4.2	METHODS	
	4.2.1	Assessment of key assumptions	
	4.2.2	Selection of models	91
	4.2.3	Technical evaluation of the selected models	
	4.2.4	Types of assumptions	
	4.2.5	Indicators	
	4.3	Results	
	4.3.1	Introduction	
	4.3.2	Integrated assessment models: the selection	
	4.3.3	Integrated assessment models: technical evaluation	100
	4.3.4	Adaptability	
	4.3.5	Conclusions	
	4.3.6	Regional models / assessment tools	
	4.3.7	Economics in the assessment models	10/
	4.3.8	Indicators of change in biodiversity and ecosystem services	
	4.4	CONCLUSIONS	
5	WOF	RKSHOP	115
	5 1	DESCRIPTION OF TARK 4 FROM THE TOP	115
	5.1	BACKGROUND AND AIMS OF THE WORKSHOP	115
	53	PROCEEDINGS	115
	531	Opening and introduction: What this study aims to do?	115
	532	The role of the scenarios and models project in the TFFR context	115
	533	Session 1: Review of available models and scenarios: "State of the Art"	110
	5.3.4	Session 2: Assessment of key assumptions in the available quantitative tools	
	5.3.5	Session 3: Policy recommendations: How to use the quantitative tools for policy devel	lopment
	withi	1 TEEB	
	5.3.6	Summary of the expert feedback	123
6	іліті	COATION OF THE STUDY FINDINGS INTO THE SECOND BUASE OF TEED	125
U		CGRATION OF THE STODT FINDINGS INTO THE SECOND FHASE OF TEED.	
	6.1	DESCRIPTION OF TASK 5 FROM THE TOR	
	6.2	CONTEXT: THE IDEAL GLOBAL ASSESSMENT OF THE ECONOMICS OF ECOSYSTEMS AND	
	BIODIVE	RSITY AND THE TEEB PHASE 1 FIRST STEP	
	6.3	RECOMMENDATIONS	
	Which	h models to use	
	6.3.1	Modelled effects on nature	
	0.3.2	Empirically test the effect of changes in key assumptions	
	0.3.3	Model effects on the economy	
	6 3 A	Pageline secondries	
	635	Dasettine scenarios for higdiversity and ecosystem services management	129
	636	Systematic classification of acosystem sarvice indicators	130
	637	Re-examination of the use of the MSA indicator	131
	64	Research NEEDS	132
	641	Models	132
	6.4.2	Indicators	
	6.5	GENERAL RECOMMENDATIONS	132
	6.6	RECOMMENDATIONS FOR TEEB II (UP TO OCTOBER 2010)	133
	6.6.1	Developing new approaches	
	6.6.2	Implementation and resources required	
	6.7	THE MEDIUM AND LONG TERM: UP TO THE MDG TIMESCALE 2015 AND BEYOND	
7	DEF	FDFNCFS	124
1	IND/F		

SCENARIOS AND MODELS FOR EXPLORING FUTURE TRENDS OF BIODIVERSITY AND ECOSYSTEM SERVICES CHANGES

EXECUTIVE SUMMARY

This report provides the full results of the European Commission (DG Environment) contracted study on "Scenarios and models for exploring future trends of biodiversity and ecosystem services changes". The overall purpose of the study is to clarify which models and scenarios are being used and can be used to explore the developments of biodiversity and ecosystems in light of different assumptions of drivers and policies. This will be of general use for policy analysis and reflection, and it will also be of specific use to the second phase of the initiative on *The Economics of Ecosystems and Biodiversity* (TEEB). TEEB aims to build future visions and projections taking into account alternative policies and assess their potential impacts on ecosystem services and the cost of their loss, both in biophysical and in monetary terms.

This study has built on previous supporting studies for TEEB, in particular *The Cost of Policy Inaction (COPI): the Case of Not Meeting the 2010 Biodiversity Target* (Braat and ten Brink, 2008), and recent key global and regional environmental assessments, which have included model and scenario based projections of changes in biodiversity and ecosystems and their impacts on ecosystems services and human well being. In particular, this study has:

- Reviewed the different scenarios and models used to explore future trends in biodiversity loss and ecosystem change and their associated impacts on ecosystem services (see Section 2.6 for detailed conclusions).
- Summarised the key findings from recent global and regional assessments (see Section 3.11 for detailed conclusions).
- Assessed the limitations of existing models with respect to their suitability for producing robust projections of changes in biodiversity and ecosystem services (see Section 4.4 for detailed conclusions).
- Instigated a peer-review of the study's' initial conclusions during an expert workshop (see meeting report in Chapter 5).
- Proposed a set of options for suitable models and scenarios to be used in future studies for TEEB and beyond (see Chapter 6).

The key overall conclusions and recommendations from this study are:

- There are a large number of modelling tools available today (which differ in focus, timeline, assumptions, spatial resolution, sensitivities and in choice of indicators of biodiversity and ecosystem services), and most are able to capture various forms of ecosystem service provisioning to a reasonable degree. However, ecosystem service coverage tends to focus on provisioning services and carbon sequestration. Furthermore, the linkage between ecosystem services and biodiversity is not well understood and models currently use indicators that are based on limited knowledge of service supply in different natural, semi-natural and human-managed systems. Furthermore, many biodiversity processes require spatially explicit modelling and operate at smaller scales than can be practically analysed in global studies.
- The key finding from the use of such models and scenarios in recent global and regional environmental assessments is that substantial biodiversity loss will continue under all the considered policy scenarios. It is also clear that ultimately the drivers such as increasing population growth and per capita resource use have an overwhelming influence on biodiversity outcomes. Their impacts currently vastly outweigh specific measures that attempt to protect biodiversity. A further problem is that the full socio-

economic values of biodiversity are underestimated and not captured in market systems. Furthermore, the full impacts of biodiversity loss tend to be overlooked by politicians and other decision makers, especially when decisions are overly reliant on narrowly focused and incomplete cost-benefit assessments. As a result many of the biodiversity conservation measures are not implemented fully. Thus, given the projected expansion of the global economy to 2030, it seems inevitable that further impacts on biodiversity and ecosystem services will occur in the future, unless stronger measures are taken to conserve biodiversity and ensure that economic growth is truly sustainable in environmental terms.

- Most assessments make optimistic assumptions about the increased productivity of agriculture, which could significantly reduce the need for expansion of agricultural land into natural areas. The assessments therefore suggest that productivity increases are key to ensuring that biodiversity losses are not even greater than those forecast in the models. They also suggested that the designation of additional protected areas will have little impact on biodiversity (largely due to external pressures on them). However, these conclusions may be too simplistic and a result of the limitations of the models and biodiversity indicators that have been used.
- Although it is reasonably certain that future biodiversity losses will be substantial the consequences for ecosystem services is unclear. There is evidence to suggest that ecosystems may require a minimum quality (e.g. abundance and diversity of species) to maintain the ecosystem functioning that underpins many important ecosystem services. Below such critical thresholds, ecosystems reach a tipping point, and may suddenly switch their character, no longer providing the same kind, or level, of ecosystem service. Furthermore, the restoration of such ecosystems, if possible at all, is likely to be very difficult and costly.
- In practice the current choice of models for further TEEB work on biodiversity and ecosystem services is much more limited than it might seem. There is no single model that covers the whole range from socio-economic developments, policy inputs, environmental and land use change, and biodiversity and ecosystem services for terrestrial and aquatic systems together. Therefore multi-model combinations are needed to generate comprehensive and internally consistent results. However, new tools such as Meta-models like MIMES or InVEST and the vulnerability tool of ATEAM provide some promise for future use.
- At the moment, few models include adequate feedbacks from changes in biodiversity and ecosystem services to socio-economic development, and therefore do not show the negative effects of reductions of ecosystem services on human well-being. Furthermore, model results can estimate only partial costs but not the full benefits of management/policy options.
- This study was not designed to empirically test the effect of changes in key study assumptions. Nevertheless, findings from the review indicate that the numerical values of drivers applied as different scenarios in the assessments have a crucial influence on projected changes in land use and their impacts on biodiversity and indicators of ecosystem services, such as agricultural production, carbon sequestration and water availability. In addition, the framing and design of assessments as a whole are at least as important factors in terms of their influence on the uncertainty and potential bias of results.
- None of the individual tools is sufficient to meet TEEB's entire needs in the short term, but many offer useful elements. Nevertheless the integrated assessment models

reviewed and selected as most promising for TEEB ambitions (IMAGE for Terrestrial and EwE for Marine) are developed in such a way that they can be relatively easily adapted to accommodate questions regarding ecosystems, ecosystem services and economic indicators. A number of theme-, sector- or region-specific models exist which can be used to achieve this.

- An assessment of the Mean Species Abundance (MSA) indicator was included in the study because the Globio model that incorporates it is used in most global assessments to assess likely impacts of land use and climate change on biodiversity. It was also used to adjust per hectare values of ecosystems services in the COPI supporting study for TEEB Phase 1. It appears that despite various limitations it is currently the best means of modelling global biodiversity impacts and is a suitable metric for use in TEEB. Nevertheless, the way it was used in the COPI study is a critical issue and needs to be re-examined. The approach needs to be validated and if appropriate the MSA / ecosystem functional relationships adjusted accordingly. The use of other indicators should also be considered where more appropriate, e.g. including Human Appropriation of Net Primary Production (HANPP). It is also important to point out that some ecosystem services may be better modelled directly, as they are not necessarily affected by biodiversity or ecosystem intactness as characterised by the MSA.
- Another ongoing limitation of most models and model/scenario combinations is that the impacts of changes in biodiversity and several ecosystem services, cannot easily be expressed in meaningful terms for economic sectors, countries or target groups of policy. The current models are physically based and do not integrate economic factors, such as the values of biodiversity and costs of action and inaction. This is likely to remain problematical because of the typical complexity of interactions amongst physical, biodiversity and economic impacts.
- Overall it is clear that in the short-term further work should be based on upgraded and integrated versions of currently available models, to extend the assessment work carried out so far. In particular a future assessments need to cover all ecosystems and ecosystem services, be global and build in a diverse set of indicators for biodiversity. A fully functional link to economic values and social impacts also needs to be developed. This is will entail:
 - Using existing models and exploring ways to enhance or add new indicators:
 - IMAGE-GLOBIO and COPI upgrade and scenarios; and
 - Marine (EwE set and MSA indicator to match GLOBIO land assessment).
 - Promoting efforts to validate GLOBIO (and other models) through observation and experiment.
 - Incorporating a wider range of drivers into existing models (e.g. urbanization).
- As a result of the current model limitations, it is also concluded that the ideal approach for future modelling, for TEEB and similar studies, should be to combine different models and compare several approaches. Comparing the results of these different approaches would give an indication of the gaps and uncertainties in the underlying mechanisms and consistent results between the different models would provide a greater confidence in the results. It would also be useful to compare several different model-combinations such as one 'traditional' integrated assessment model linked with several sectoral models currently under development (such as MIMES and/or InVEST).
- The most useful scenario-approach (trends with policy options, explorative or normative) will depend on the specific questions being addressed by TEEB as well as the time and resources available. These factors will also determine whether the inclusion of more detailed sectoral or region-specific models is needed. Exploratory

scenarios (e.g. GEO4) are able to "create and illustrate the virtual future space in which conflicts between population and economic growth versus ecosystems and sustainable use will take place". However baseline scenario approaches (e.g. OECD EO-2030) are more useful for examining the economic consequences of alternative policy options.

- Very few scenarios are available that deal with biodiversity and ecosystems explicitly. More biodiversity-relevant scenarios are needed that reflect "real" policy options (e.g. with respect to issues such as REDD and the production of biofuels). It is therefore also recommended that a policy dialogue be set up to develop Policy Action Scenarios which have a broad support across stakeholders and regions. The scenarios need to build in the key drivers behind ecosystem and biodiversity loss, and there still may also be a need for policy measures, both in business-as-usual scenarios and to develop different policy action scenarios.
- Further recommendations are provided in Chapter 6 for future TEEB work, including work for the Science and Economics report (to be produced in September 2009) and work up to the 2010 CBD CoP 10 in Nagoya. This work may also inform a broad range of biodiversity policy issues, including discussions concerning the development of global and EU post 2010 biodiversity targets. Some recommendations are also made for longer-term work beyond TEEB, for example related to the 2015 MDG agenda.

1 INTRODUCTION

1.1 Background and aims of the study

Computer based models have become important tools for examining the way that systems are likely to react to changes, including deliberate manipulation. They are therefore increasingly being used to study the possible effects of human actions on the Earth and its biodiversity and associated ecosystem services. Such models are typically based on scenarios, which provide an approach for examining how plausible alternative futures may unfold and comparing the potential consequences of different decisions in different future contexts. These modelling and scenario tools have formed the basis of a number of recent global and regional assessments that project future environments on the basis of changes in drivers of ecosystem change and biodiversity loss according to various development scenarios, including the *Millennium Ecosystem Assessment* (MA, 2005), *The Global Biodiversity Outlook* (2006), the *Intergovernmental Panel on Climate Change Fourth Assessment* (IPCC 2007), the *Global Environment Outlook 4* (UNEP 2007), the *International Assessment of Agricultural Knowledge, Science and Technology for Development* (IAASTD 2008), and the *OECD Environmental Outlook* (OECD, 2008).

The Economics of Ecosystems and Biodiversity (TEEB) initiative is also highly dependent on the use of models and scenarios to assess the likely benefits of biodiversity with respect to its ecosystem services and the potential costs of losses in services. However, supporting studies for Phase 1 of the initiative were only able to provide preliminary and incomplete estimates of the possible impacts of ecosystem services losses. The TEEB interim report (TEEB 2008) therefore recognised the need to address in the second phase of TEEB aspects regarding different uses and utilisation levels of biodiversity that affect the future state of biodiversity and the levels of ecosystem's services provisions. The need for further development and use of scenarios and models was also recognised and discussed during an expert workshop hosted in Brussels in March 2008¹.

The second phase of TEEB is currently underway, and this will include the development of scenarios and models that will build future visions and projections taking into account alternative policies that may create these environments. This is a crucial step in assessing ecosystem benefits and the cost of their loss, both in biophysical and in monetary terms. To support this work the European Commission (DG Environment) commissioned this study on "Scenarios and models for exploring future trends of biodiversity and ecosystem services changes". As noted in the Terms of Reference (ToR), this study had the following three aims:

- "to review the different scenarios and models used to explore future trends of biodiversity loss and ecosystem change and the impacts on the ecosystem services they provide;
- to review how these models have factored in policy action, notably environmental and conservation policies;
- to propose a set of options for suitable models and scenarios to be used in a global assessment and discuss them in a workshop."

¹ http://ec.europa.eu/environment/nature/biodiversity/economics/pdf/workshop_proceedings.pdf

The Terms of Reference for each specific task within this study are documented at the beginning of each chapter in this report.

This study builds on the work carried out within the wider context of the Phase 1 of TEEB and is focused on providing outputs of value to Phase 2. Within TEEB Phase 1, the following three projects were of particular relevance to the development of models and scenarios for Phase 2:

- The Cost of Policy Inaction (COPI): The Case of Not Meeting the 2010 Biodiversity Target (Braat and ten Brink, 2008). This project assessed the cost of not halting biodiversity loss by looking at the range of ecosystem service losses that will result from the loss of biodiversity and hence the losses to the economy and society. This built on the GLOBIO model that focused on landuse and used an OECD baseline scenario for projecting into the future. The work underlined the benefit of large scale modelling work for TEEB, and identified needs for model/scenario work to update the landuse based work and, at least as importantly, to look at models/scenarios for other biomes, notably marine and wetlands. It also underlined the need for sensitivity/scenario runs using different assumptions.
- *Review on The Economics of Biodiversity Loss Economic Analysis and Synthesis*; a synthesis report of the call for evidence and workshop (Markandya *et al.*, 2008). This work underlined, inter alia, the need for scenario/sensitivity analysis that allows a range of assumptions (and their effects) to be appropriately characterised and analysed, and the need for this for all biomes and regions. It also emphasised the importance of both global and national level studies, requiring global/national model/scenario applications.
- *Review on the Economics of Biodiversity Loss: "Scoping the Science* (Balmford *et al.*, 2008). This work provided both a framework for analysis how scenarios can be used, what issues need addressing etc and also provided specific insights into models / scenarios and teams working on the different benefits arising from ecosystem services.

Each of these projects, and the others within the TEEB Phase 1, therefore provided a useful basis and background for work within this new study. In addition, the TEEB study has built on a wide range of recently published large-scale assessments which have used scenarios and models to develop projections of human impacts on biodiversity and ecosystem services. In particular the following assessments are reviewed in detail with respect to their use of models and scenarios and their projections for biodiversity and ecosystem services:

- *Millennium Ecosystem Assessment (MA)* assesses the consequences of ecosystem change for human well-being and sets out to establish the scientific basis for actions needed to enhance the conservation and sustainable use of ecosystems (*MA*, 2005).
- *Global Biodiversity Outlook 2 (GBO-2)* from the CBD looks at progress to date in achieving progress towards the 2010 Biodiversity Target and investigates the policy options that could have major positive or negative impacts on biodiversity in the future up to 2050 (sCBD, 2006).
- UNEP Global Environmental Outlook 4 (GEO-4) looks at how deterioration of the environment can limit human development and reduce quality of life. It examines the opportunities that the environment provides for improving human well-being (UNEP, 2007).
- *Ecosystem-based Global Fishing Policy Scenario*, analyses marine policy options under the GEO-4 scenarios (Alder *et al.*, 2007).

- OECD Environmental Outlook to 2030 (OECD) analyses the costs of inaction in addressing environmental issues to emphasise the economic rationale of ambitious environmental policy and examines the potential impact of policy interventions (OECD, 2008).
- International Assessment of Agricultural Science and Technology for Development (IAASTD) examines how agricultural knowledge and technology can be used to meet the challenges of development and sustainability, addressing issues such as poverty, malnutrition, rural livelihoods and environmental sustainability. It focuses on the multi-functional use of agriculture to deliver social, environmental and development goals (IAASTD, 2008).

1.2 Structure of this report

This report builds on a previous Interim Report (of 31st May 2009) and provides a complete account of the work carried out as part of the study. The subsequent chapters report on the results of specific tasks (described in the study terms of reference) as outlined below:

- Chapter 2 (Task 1) provides an overview of the "state of the art" of forward-looking large-scale models and scenarios that may be used by TEEB and similar studies. It also identifies and explains the significance of strategic gaps between the "state of the art" and priority needs for TEEB and further assessments. Basic descriptive information is also provided to underpin the analysis in this and other chapters, most of which is tabulated in a separate Technical Appendix (Appendices 1.1 1.5).
- **Chapter 3** (Task 2) reviews the key results and overall conclusions of the recent global environmental assessments (as listed above), with respect to their impacts on terrestrial, freshwater and marine biodiversity and ecosystem services.
- **Chapter 4** (Task 3) provides a qualitative assessment of the limitations of the current models' capabilities and the relevance of existing scenarios with respect to the requirements of TEEB. The selected models were scored in relation to their potential use for TEEB and these scores are provided in Tables in Appendix 3.
- **Chapter 5** (Task 4) provides an account of the study workshop that was held with invited experts in Brussels in May. The aim of the workshop was to obtain feedback on the results of Tasks 1 and 3 and to develop preliminary recommendations for the development of models and scenarios for future work.
- **Chapter 6** (Task 5) builds on the analysis carried out in Tasks 2-4 and the results of the workshop to provide general recommendations together with more specific recommendations relating to work for the following three key timescales: for the Science and Economics report to be produced in September 2009, work up to the 2010 CBD CoP 10 in Nagoya and longer-term work beyond TEEB (e.g contributing towards the 2015 MDG agenda).

2 IDENTIFICATION AND OVERVIEW OF AVAILABLE MODELS

2.1 Description of Task 1 from the ToR

"The contractor should provide an overview of the models that have been built to identify the main drivers of the loss of biodiversity and natural ecosystems and forecast their impact on:

- the level of biodiversity (in biophysical or other terms); or
- the level of ecosystem services provided

The term 'model' should be interpreted widely, and should cover also the scenarios which the models are deploying, where these are considered to offer some robust assessment of future trends.

In identifying models, the following points are relevant

- a. The overview should mainly focus on models used for large-scale or global assessments. However, it should also cover, in a more selective way, models used at different spatial levels (local, biome, etc.). So, where there are a number of local models then the identification should limit itself to providing a few examples and a generic description. It should be explained how global models take account of and relate to models that address specific biomes (i.e. forests, fisheries) or that are exploring a more detailed spatial level (i.e. if they are bottom-up, aggregated versions, etc). Of course, within global models there will usually be some regional breakdown that needs to be reflected.
- b. The overview should include the attempts made to assess the wider economic impacts of the loss of biodiversity and ecosystems (e.g. with CGE models).
- c. The overview should aim at covering all main types of biomes and ecosystems (terrestrial, freshwater and marine).
- *d.* The overview should take on board the work produced for the preparation of the Interim report of TEEB and in particular the COPI and Scoping the Science studies.
- e. Of particular interest is the provision of ecosystem services. Modelling the provision of services is generally less advanced than modelling the status of biodiversity and ecosystems, so that available models are expected to be fewer, but the overview should cover recent and on-going developments.
- f. The overview should also examine whether there are models that assess the economic costs of policies, including the opportunity costs of conservation. This can cover models that look at the economic value of ecosystems in a static sense (so, for example, there are analyses setting out the net present value of alternative land management systems for tropical forest biomes).
- g. Attention should be paid to analysing the conditions required for designing scenarios and models that are relevant for each ecosystem service (e.g. what is the spatial resolution needed, what major factors need to be taken into account, etc).

- h. As far as is possible, the inventory should include a forward look i.e. address on-going model developments (models that could be expected to be operational in one-two years time).
- *i.* It should be examined to what extent the costs and benefits of policies can be jointly assessed.

The contractor should develop a number of criteria for making a structured inventory of the main models. This should include an overview of the strengths and weaknesses of these models (and the data available for such modelling). It should also include an overview of the key drivers and assumptions involved in such models and their respective scenarios."

2.2 Introduction

2.2.1 Definitions/logical background

Decision makers need to understand what impacts the implementation of policies has on the Earth. Policy interventions at local to global scales therefore require knowledge of how the Earth works. Scientists usually gain understanding of a system and its components by experimentation and observation. The Earth can be viewed as a system consisting of the unified set of physical, chemical, biological and social components, processes and interactions that together determine the state and dynamics of Planet Earth, including its biota and its human occupants (ESSP, 2009). Because manipulative experiments on a global scale are not feasible, we rely on models to test sensitivities of the Earth system to modified components, processes and interactions. Models based on scientific foundations can help to understand and forecast environmental changes and become useful for policy analysis at local to global scales. However, the use of models is just one of the options to make predictions about the future, and models are limited to information that can be quantified, expressed in numbers.

A *model* is a simplified abstract representation of the complex reality. Models mathematically and logically represent a system of entities, phenomena and processes using statistical and computational methods. Models allow simulation, visualization, and manipulation of the entities, phenomena or processes represented by the model. Earth system models often incorporate several models of sub-systems or components (e.g. socio-economic and earth systems make up integrated assessment models). Mathematical (statistical/quantitative) models usually represent a system by a set of variables and a set of equations that describe the relationships between the variables. Variables include at least input variables (e.g. observed land use/cover, species abundance), "variables that are part of the equations" (e.g. parameters relating land use intensity to species abundance), and output variables (e.g. modelled land use/cover, predicted species abundance). Models, through the type of equations used, can be linear, non-linear, deterministic, probabilistic, static or dynamic or a combination of these. The functions/equations relating variables can be derived from empirical observations or heuristically derived. Models can be built for different purposes, as scoping models, often built with a high degree of stakeholder participation, research models that incorporate more detail and are focussed on calibration and testing of parameters and assumptions; and finally management tools that aim to compare the outcomes of different management options.

Scenario building and analysis is a way to investigate the unpredictability of future developments, and can be used to formulate robust policy-options. A *scenario* is a systematically crafted story about the future. Scenarios are not necessarily the most likely, or plausible possible futures. Scenarios do not forecast or predict the future, as the future

development of systems that scenarios address is highly complex and inherently unpredictable. Scenarios, or some aspects thereof, may be described by variables for use in quantitative analysis and models. A scenario can be implemented in multiple models resulting in scenario- and model-specific output variables (e.g. the GEO Sustainability First scenario implemented in the IMAGE model).

Assessments are wide ranging consultations and overviews on a particular topic that incorporate models and scenarios. While scenarios pose questions for future developments, models are the tools by which these questions are explored and the answers are compiled in assessments (Figure 2.1).

Figure 2.1 The link between assessments, models and tools: Assessments summarize the answers provided by modelling exercises on questions posed by scenarios. But not all questions can be answered by models.

This review focuses on models and scenarios for exploring future trends of biodiversity and ecosystem services. *Biodiversity*, or biological diversity, is defined as the variability among living organisms from all sources including, *inter alia*, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems (CBD, 1992). *Ecosystem services* are the benefits people obtain from ecosystems (MA, 2005a). An ecosystem is a dynamic complex of plant, animal, and microorganism communities and the nonliving environment interacting as a functional unit (MA, 2005a), including systems that are impacted or managed by humans like agro-ecosystems. Ecosystem services include provisioning services such as food, water, timber, and fibre; regulating services that affect climate, floods, disease, wastes, and water quality; cultural services that provide recreational, aesthetic, and spiritual benefits; and supporting services such as soil formation, photosynthesis, and nutrient cycling (MA, 2005a).

2.2.2 Structure of this review

This review is structured along the lines of the driver-pressure-state-impact-(response) framework (Figure 2.2). In this DPSI(R) scheme, the drivers represent socio-economic activities (e.g. energy consumption) which exert a certain pressure (e.g. emission greenhouse gases). This then leads to an altered state of one or more environmental domains (e.g. temperature and precipitation change). This change in the state can have multiple impacts on ecosystems and/or human systems (e.g. loss of biodiversity; spread of vector-borne diseases. On the basis of observed and/or projected impacts, humans may choose to respond by taking deliberate corrective action to redress negative impacts. The Millennium Ecosystem Assessment (MA, 2005a) identified as the main pressures on biodiversity and ecosystem

services habitat change, climate change, invasive species, over-exploitation and pollution (see Chapter 3).

Figure 2.2: Driver-pressure-state-impact-response framework for ecosystem services and biodiversity change

For this review, models were selected and analysed on the basis of the drivers and pressures they incorporate and the output-variables (ecosystem services and biodiversity) which relate to state/impact estimates. Summaries of the analysis of the selected models and scenarios are tabulated in Appendices 1.1 to 1.5 (and provided in separate Excel tables).

The central questions that were considered in this review of models and scenarios were:

- What types of models are needed?
- Which models and scenarios are useful for predicting future developments of biodiversity and ecosystem service provisioning?
- What kind of questions can be answered by different modelling approaches?

2.2.3 Ecosystem services

The Millennium Ecosystem Assessment (MA, 2005a) raised concern about the current and future state of ecosystem services due to human impacts on ecosystem and the severe effects of declining ecosystem services on human well-being. They provide qualitative trends in anthropogenic pressures (habitat change, climate change, invasive species, over-exploitation, pollution) that are assumed to affect ecosystem services. Detailed information on the provision of ecosystem services by different ecosystems remains, however, scarce (but see COPI-scoping study: Balmford *et al.*, 2008). Costanza *et al.* (1997) provided the first rough global estimates for the value of ecosystem services, aggregated by biome and land cover type. Despite increasing interest in ecosystem services in recent years, knowledge about ecosystem services remains limited, as pointed out by Naidoo *et al.* (2008):

"In contrast (to global estimates of biodiversity), the spatial estimation of global ecosystem service values remains quite crude. Similar to initial estimates of species richness, an early and controversial study on global ecosystem service values used localized, context-specific valuation studies to extrapolate economic values for the whole world (Costanza et al., 1997). Ten years after this study was published, global and regional efforts to map ecosystem services continue to use these estimates (Sutton & Costanza, 2002, Li et al., 2007, Turner et al., 2007), despite the well known limitations (Bockstael et al., 2000). In addition, few studies have taken advantage of recent technical advances in the selection of priority areas for biodiversity and

adapted these advances to cover ecosystem services (but see Naidoo & Ricketts, 2006, van Jaarsveld et al., 2005, Chan et al., 2006)".

To be able to quantify ecosystem service provision, suitable indicators for the different services have to be defined that can be mapped and modelled. Table 2.1 gives an overview of the most common indicators used for different ecosystem services. For some ecosystem services finding the appropriate measure is quite straightforward (e.g. food production, timber production, primary productivity), as these are the already marketed services while for others, especially regulating and supporting services it is more difficult to find suitable indicators (e.g. disease regulation, natural hazard regulation).

There are different approaches to studying ecosystem services ranging from aggregated estimates like those of Costanza et al. (1997), spatial explicit mapping of current ecosystem services and studies that try to forecast effects of different policy/management options on future ecosystem service. Some approaches aim at quantifying ecosystem service provision in biophysical terms, others provide monetary values. Most studies focus on a region and on a few ecosystem services only (Table 2.2, Figure 2.3). For some ecosystem services like carbon sequestration or storage as well as food production global maps are available, but for most ecosystem services global studies commonly provide aggregate number instead of maps (Costanza et al., 1997). However diverse the approaches, there are some general similarities. Some services like carbon sequestration, food production and water supply are covered by most studies while others are rarely considered. The approaches for estimating food production, carbon sequestration and water supply are similar between studies: food and timber production estimates are mostly taken from local or global databases (e.g. FAO statistics) while estimates for carbon sequestration, carbon storage and (surface) water supply are derived from biophysical models (mostly WaterGAP, SWAT or WBM for water supply and CENTURY or TEM for carbon sequestration) based on climate and land cover information. Land cover/land use maps and changes in land use are the basis for all studies on ecosystem services and biodiversity loss (Tscharntke et al., 2005, Pereira & Cooper, 2005, Foley et al., 2005, Metzger et al., 2006, Nelson et al., 2008, Egoh et al., 2008).

Table 2.1: Categorisation of ecosystem services and indicators commonly used. For each ecosystem service an indication is given how often it is included in ecosystem service studies (based on those regional studies listed in Table 2.2)

Ecosystem service	Number of studies out of	Indicator
	24 (from Table 2.2) that	
	include this ES	
Provisioning		
Food	10	Agricultural production (crop yield)
		Grassland livestock production
		Forage production
Timber	3	Timber harvest
Fuel	0	Fuel wood energy
Fresh water	8	Surface runoff
		Stream discharge
		Water surplus (rainfall-evapotranspiration)
Biochemicals, natural medicines,	1	Bioprospecting
pharmaceuticals		
Regulating		·
Climate regulation	12	Carbon sequestration
_		Carbon storage
Water flow/flood regulation	5	Contribution of groundwater to baseflow
_		Vegetation cover in watershed, water storage
		in wetlands
Natural hazard regulation	1	Avalanche protection
Disease regulation	0	(no indicator yet)
Water purification/quality	2	water N or P content
		water sediment loading
Air quality regulation	2	N emissions
Erosion control	3	Soil erosion potential and vegetation cover
		Soil erosion
Waste treatment	1	Removal of nutrients, pathogens metals and
		sediments
Supporting		
Nutrient cycling	3	Soil fertility
Soil formation	2	Soil organic matter accumulation
		Sedimentation
Primary production	1	NPP
Pollination	3	Distance to natural habitat/proportion of
		natural habitat
Pest control	2	Distance to natural habitat/proportion of
		natural habitat
Cultural	•	
Aesthetic	5	House prices
Recreational	5	Site visitation rate
Spiritual	1	(not specified, value transfer from individual
1		studies)
Educational	0	(No indicator yet)

Pollination and pest control were classified as regulating services by the MA while others consider those to be supporting services (supporting food and timber production). Both pest control and pollination are known to be dependent on animal (mainly insect) abundance and distribution, and can be modelled in relation to distance to natural habitat or landscape composition on the scale of about 1 km (Klein *et al.*, 2003, Kremen *et al.*, 2007). These structures and distances are too small to be considered by global models due to their coarse resolution. Furthermore, pollination is only important for certain crop species and does not apply to cereals and tubers, which constitute the largest amount of food production (Klein *et*

al., 2007). Most models focus on these staple crops and do not consider other, pollinatordependent crops. Because of the small scale at which they operate, pollination and pest control are rarely considered in ecosystem service inventories and modelling approaches. The same holds for disease regulation which is hardly explored as an ecosystem service (but see Xu *et al.*, 2008). However, all three ecosystem services are closely linked to species diversity (Klein *et al.*, 2003, Brownstein *et al.*, 2005, Bianchi *et al.*, 2006, Jactel & Brockerhoff, 2007) and biodiversity may therefore be a suitable indicator for pest control, disease control and pollination. As an independent analysis the global valuation study of pollination by Gallai *et al.* (2009) can be used to complement a modelling assessment of other ecosystem services. The small scale of these particular services is not only an obstacle to incorporating them into global models/assessments as there are also gaps in knowledge of processes involved (e.g. disease control, air quality regulation by trees).

Figure 2.3: Coverage of the different (groups) of ecosystem services and biodiversity measures by the models reviewed. While food production is covered by most models all other services are only included in a small number of models.

Region	Ecosystem services/indicators covered (either modelled or mapped)	Do the models consider future scenarios and if so, which ones?	Reference	
Willamette Basin, OregonCarbon sequestration, biodiversity conservation, soil conservation, food and timber productionSt		Stakeholder- defined scenarios	InVEST Nelson <i>et al.</i> , 2009a, Nelson <i>et al.</i> , 2008	
Central Coast ecoregion of California, United States	Carbon storage, flood control, forage production, outdoor recreation, crop pollination, and water provision, biodiversity	No	Chan <i>et al.</i> , 2006	
European Alps	Avalanche protection, timber production, scenic beauty and habitat function	Human development and climate	Gret-Regamey <i>et al.</i> , 2008	
Patuxent River Watershed, Maryland	Water supply, soil nitrogen emission, NPP	18 scenarios	Costanza et al., 2002	
New Jersey	Climate regulation, disturbance regulation, water regulation, water supply, soil formation, nutrient cycling, waste treatment, pollination, biological control, aesthetic and recreation, cultural and spiritual, habitat function with average annual monetary values	No	Costanza <i>et al.</i> , 2002 http://www.nj.gov/dep/ dsr/naturalcap/	
Southeastern Australia	Biodiversity, soil erosion, carbon sequestration, water supply, economics	No	Crossman & Bryan 2009	
Uganda	Soil fertility-poverty link (crop yields, labour costs)	No	Schreinemachers <i>et al.</i> , 2007	
Eastern USA	Carbon sequestration, water supply, soil salinisation	No	Jackson et al., 2005	
2 Minnesota watersheds	Water quality, fish populations, greenhouse gases, carbon sequestration, sedimentation, flooding, farm income	4 scenarios + baseline	Boody et al., 2005	
Mbaracayu Biosphere Reserve, Eastern Paraguay	Wildlife yield, timber, bio- prospecting, existence value, carbon storage	No	Naidoo & Ricketts, 2006	
Murray-Darling watershed	Climate, runoff, water supply	No	CSIRO (http://www.csiro.au/ <u>resources/WaterAvailab</u> <u>ilityIn</u> <u>Murray-</u> <u>DarlingBasinMDBSY.h</u> <u>tml</u>)	
Goulburn Broken Catchment	Ecosystem service models for different land use types and sub- catchments	Different management scenarios	CSIRO (http://www.ecosystem servicesproject.org/html /case_ studies/goulburn.html)	
Piedmont headwater	Fish populations (environmental	10 scenarios	Nelson <i>et al.</i> , 2009b	

Table 2.2: Some examples of regional models/mapping approaches with information about the services covered by the different studies.

Region	Ecosystem services/indicators covered (either modelled or mapped)	Do the models consider future scenarios and if so, which ones?	Reference
streams in the Chesapeake Bay watershed	quality, recreational fishing)		
Organic and conventional farms in Canterbury, New Zealand	Pest control, pollination, soil fertility, food production, hydrological flow, aesthetic values, carbon sequestration, N- fixation	No	Sandhu et al., 2008
South Africa	Surface water supply, water regulation, soil retention, soil accumulation (fertility), carbon storage	No	Egoh <i>et al.</i> , 2008
Massachusetts, Maury Island and 3 Californian counties	Valuation based on land cover mapping	No	Troy & Wilson, 2006
Yangtze River	Water flow regulation and hydroelectric power production, including valuation	No	Guo <i>et al.</i> , 2000
USA	Carbon sequestration, land use change	Effect of different carbon sequestration policies	Luboski et al., 2006
Lake Greifensee, Switzerland	Landscape aesthetics	Effects of payments for farmers on land use	Schüpbach et al., 2008
Marine ecosystem, Alaska	Fish yield, wildlife watching, naturalness	Economic scenarios (laissez- faire, regulating taxes)	Eichner & Tschirhart, 2007 GEEM: general equilibrium ecosystem model
Spain	Water use	No	Pulido-Velazquez <i>et al.</i> , 2008
Eastern Amazon, Brazil	Carbon storage, plant diversity, farm income	Baseline, alternative technologies, PES, taxes	Börner et al., 2007
Wells Creek, Minnesota, USA	Water quality, fish populations, greenhouse gas emissions, carbon sequestration, farm income	4 land use scenarios	Boody et al., 2005
Southeast Alaska	Fish and wildlife provision and harvest, recreation	No	Beier <i>et al.</i> , 2008 Geospatial decision support tool

2.2.4 Factors affecting the amount of ecosystem service provision

To assess future conditions of ecosystem services it is important to capture all important processes that affect ecosystem service provisioning. Which ecosystem services and to what degree are provided by a system depends on the biotic and abiotic factors of the ecosystem, especially on climate, vegetation type and community composition. Human modifications of natural systems typically results in changes in vegetation which are therefore expected also to affect the provisioning of ecosystem services. Due to the lack of better approximations, and in accordance with the Millennium Ecosystem Assessment (MA, 2005), ecosystem services are

often implicitly assumed to decrease when biodiversity is reduced due to human impact (Chapin *et al.*, 2000). However, the relationship between biodiversity and different ecosystem services is not straightforward (Kremen, 2005, Balvanera *et al.*, 2006, Chan *et al.*, 2006, Naidoo *et al.*, 2008). Even though primary production has been found to increase in experimental studies with increasing biodiversity this effect levels out at about ten different species (Hooper *et al.*, 2005). Different services relate to different components of biodiversity (e.g. functional groups) and some of these relationships might be correlational rather than causal. For example, with increasing human management intensity both biodiversity and supporting and provisioning services, like climate regulation, decline (Tscharntke *et al.*, 2005), while other services like food and timber production increase. The loss of biodiversity in agricultural systems is a direct consequence of the human enhancement of food provisioning services (Hooper *et al.*, 2005). The COPI report therefore developed and applied differentiated relationships between biodiversity and ecosystem service provision (Braat & ten Brink, 2008).

Next to land use change, climate change will also affect the local provisioning of ecosystem services by changes in abiotic conditions resulting in shifts of species, ecosystems and biomes. Further pressures on ecosystem services are pollution, the introduction of invasive species (van Wilgen *et al.*, 2008) and ecosystem fragmentation. The main drivers behind these changes are human population growth and economic development, which stimulate the need for increases in agricultural land (i.e. expansion) and productivity (normally through intensification). Policies that aim to reduce the loss of ecosystem services and biodiversity currently tend to focus on alleviating pressures (e.g. by protected area designation) and on the remediation or restoration of sites as it is often less difficult to shield from the influence of global drivers than to reduce their pressure. Studies have shown, however, that the enforcement of protected areas is often insufficient (Soares-Filho *et al.*, 2006, Western *et al.*, 2009) and may increase the pressure on biodiversity in the surrounding area (ten Brink *et al.*, 2007). Removing the pressures is not always sufficient for restoration success and active management is often needed to facilitate restoration and especially the establishment of specific species (Ormerod, 2003, Smith *et al.*, 2003, Pywell *et al.*, 2003, Sayer *et al.*, 2004)..

2.3 Review of models

2.3.1 Model selection and typology

General

An inventory of existing models was made on the basis of expert judgements, recent large assessments (Kok *et al.*, 2008) and additional literature and internet research. The models found were grouped and a selection of 41 models was made, including 5 regional studies for the comparison of global and regional approaches. Detailed information on these models is tabulated in Appendices 1.1 - 1.5. The information contained in these tables is further described in Section 2.3.2 together with examples of the tables.

The grouping of models is based on different categorisations:

- the spatial coverage and resolution they operate on:
 - o spatially explicit versus non-explicit;
 - o global coverage versus local models;
- computational complexity, detail of processes simulated: complex (mechanistic models) versus more simple (empirical-statistical) models;

- analytical technique (empirical-statistical models, equilibrium models); and
- thematic focus (socio-economic models, biophysical models and integrated models, Table 2.3, Figure 2.4)

Figure 2.4: Grouping of models covered by this review.

As all of these categories provide important information they are all incorporated in the descriptive tables. A first classification of models was based on their thematic focus (see Table 2.3) as this is most closely related to the driver-pressure-state-impact approach.

Table 2.3: Different types of models based on their thematic focus and the system they depict with examples (bold = models covered in this review). Source: Advanced tools for sustainability assessment, http://ivm5.ivm.vu.nl/sat/

Model type	Description
Socioeconomic models	
General economic	General economy models (GEM) are aggregated representations of an
models	economic system, usually a nation state (or a group of nations). They are
	closed in a sense that they are based on a consistent accounting framework
	that covers the whole economy.
D 11 11	Examples: GIAP, Env-Linkages, SNI-AGE, GEM-CCGI
Demographic models	Demography models provide long-term projections of future population
	changes, based on external scenarios on natural and anthropogenic influences.
	Examples: PHOENIX, IIASA population project (not explicitly included in the
	review although most integrated assessment models contain a demographic
	submodel)
Partial economic	Partial economic sector models (PEM) have a focus on a certain sector of the
models	economy, for which they provide much more structural detail than multi-
	sectoral general economy models can do. Sector models work on the
simplifying assumption that major feedbacks between the specific	
	the economy as a whole, e.g. effects on employment and growth, can be
	neglected. Taking macroeconomic conditions and certain prices as given, the
	allocation and distribution effects within the sector can therefore be looked at
	more realistically. Moreover, specific environmental conditions and constraints
	can be taken into account.
	Examples: IMPACT, WATSIM, Poles, CAPRI
Biophysical models	
Climate models	Climate models simulate changes in atmospheric and ocean temperature,
	precipitation and atmospheric gas compositions of the past and in the future.
	Examples: HadCM, ECHAM, CLIMBER (these models were not included in
	the review)

Model type	Description
Hydrological models Biogeochemistry	Hydrological models contain mathematical descriptions of the major elements of the water system, i.e. rivers, lakes, groundwater, soil, snow. Oceans and atmosphere are usually not considered. They area able to capture the impact of natural (e.g. climate change) and/or anthropogenic (e.g. water withdrawals) disturbances on the fluxes and states of elements in the water cycle, e.g. runoff, evapotranspiration, groundwater recharge and soil moisture. Examples: WaterGAP, Water Balance Model (WBM), SWAT Biogeochemistry (BGC) models (also called (global) vegetation models)
models	explain vegetation processes (growth, mortainty, competition between different vegetation types, disturbances) and related natural energy and matter exchanges (most important elements are H ₂ O, C, N) between vegetation, soil and the atmosphere, based on climate conditions, soil quality, nutrient and water supply. Some models focus on natural vegetation, while others deal with agricultural crops or forestry only. They can be used to simulate external effects, e.g. climate change, on vegetation growth and related material fluxes, e.g. change in soil carbon, water balances. They can also be used to simulate potential natural vegetation, e.g. for reconstructing past vegetation cover or for excluding current anthropogenic disturbance. Examples: LPJ, IBIS, CENTURY, ASSETS, GEEM, ICTYOP, ERSEM II, AusConnie, EwE/EcoOcean, PICUS, SAVANNA, BIOME-BGC, FORESEE, TEM
Integrated models	
	begin with a digital map of an initial time and then simulate transitions in order to produce a prediction map for a subsequent time (Pontius <i>et al.</i> , 2007). Land use activities are closely related to societal, environmental, institutional, and economic processes alike. The majority of the Land use change models (LUC) are therefore integrated and attempt to model the coupled human-environment system by including sectors such as agriculture, forestry, transport, or energy. Some LUC focus more on biophysical determinants of human land use activities, while others are more closely linked to economic decision models that treat biophysical conditions as decision constraints. LUC have been applied on very different spatial coverage, ranging from single farms to global coverage. Examples: CLUE , AgLU, MAgPIE/LPJ, SFARMOD, FARM, CORMAS
Integrated assessment models	Integrated assessment models try to link, within a single modelling framework, main features of society and economy with the biosphere and the atmosphere. Starting with a focus on the connection between anthropogenic greenhouse gas emissions and climate change, the agenda of Integrated Assessment Models (IAM) now includes aspects of land use, biogeochemistry, hydrology, demography and health. Examples: AIM , IFs , IGSM , IIASA model family , IMAGE , MIMES/GUMBO , IMPACT-WATER
Qualitative system analysis models	QSA approaches structure and analyses socio-economic processes and their environmental implications based on qualitative influence (system) diagrams and additional information linked to these. The required information (only the qualitative character of the interactions, like "A enforces the change of B") is less demanding for data providers and can be used under circumstances where quantitative assessments are not available, or where quantitative information is not strictly comparable. Examples: SYNDROMES, QSA-SCENE, QSSI (not included in this review)
Scenario building and planning tools	Scenario Building and Planning (SBP) models are highly integrative tools which are capable of representing a wide variety of social, economic, and environmental aspects of the Earth system. They can be used to develop and structure complex scenarios. Examples: Threshold-21, PoleStar

As ecosystem services are produced by the interaction of living organisms with their environment, biophysical ecosystem models are particularly appropriate for the modelling of ecosystem services. *Biophysical models* estimate processes like plant growth, water use, nutrient use, cycling of water nutrients and carbon that are the basis for most ecosystem services. These models include biophysical processes that are responsible for differences in ecosystem services between different natural ecosystems (e.g. forest versus grasslands) and model the effects of climate change on vegetation type. As we have pointed out, ecosystem services are assumed to be affected by human-induced changes in vegetation composition. However, many models of natural ecosystems do not include human-managed lands (arable crops, pasture, tree plantations) and *vice versa*. Biophysical models can forecast the effect of different pressures on ecosystem processes but for the determination of pressures they need input from other models that model pressures resulting from changes in drivers.

To assess the current provision of ecosystem services and to make estimations about future changes in the provisioning of ecosystem services in relation to different policies, the integration of many different models will therefore be necessary. There are few attempts to model ecosystem services spatially over large areas, but a range of sectoral models that could be used for the estimation of separate services. Provisioning services like food and timber production are covered by agricultural models and forestry models. *Biogeochemical models* not only cover plant production but also element cycling (supporting services) and partially water cycling. *Hydrological models* provide information on water supply and regulation and some also on water quality. However, to be able to account for multiple services it is necessary to integrate these sectoral models into a larger framework. Biophysical models have to be connected to *socio-economic models* that predict the drivers in land use change based on different scenario input and provide input for the sectoral models.

Integrated assessment models already provide this integration including feedbacks between different components. For example, the IIASA modelling family includes, next to the emission model group around MESSAGE and MAGICC (the IIASA-ECS modelling), a modelling suite around EUFASOM and EPIC (the IIASA/FOR modelling cluster) that have been used to predict deforestation trends under different carbon prices (Kindermann *et al.*, 2006). Land use models can probably be linked with ecosystem services in a more straightforward way because the provisioning of ecosystem services is linked to land use and future changes in land use/land management will affect ecosystem service provision and biodiversity (Lambin *et al.*, 2001, Foley *et al.*, 2005). Land use models therefore do not only form an important bridge between socio-economic developments and ecosystem service provision but also provide key input-variables (Figure 2.5).

Figure 2.5: (a) Socio-economic and biophysical models can be linked via land use. (b) coverage of the different areas (socio-economics, land use, biophysical cycles) by different models (example).

There are three different approaches to modelling global ecosystem services with specific questions connected to each of them:

- 1. large, integrated models that have been used for other international assessments: (how can they be used for ecosystem service estimations? Can they be applied for regional assessments as well?);
- 2. a combination of small, "sectoral" models that model single or few ecosystem services: (how can they be combined to give a consistent picture?); and
- 3. local modelling approaches: (how can results be upscaled to provide a global picture?).

These three groups of models are, however, not mutually exclusive and do sometimes use the same basic tools.

Biodiversity models

Next to the socio-economic, biophysical and integrated models there is the group of biodiversity models. Biodiversity models may play two distinct roles within the TEEB framework. First they provide estimates/indicators of biodiversity itself. However, biodiversity models have also been used to estimate ecosystem service provision, by either using biodiversity as a direct indicator of ecosystem services or by using functional relationships to translate biodiversity into ecosystem services as in the COPI study (Braat and ten Brink, 2008). Biodiversity models can be separated into indicator-based models (e.g. GLOBIO, BII, SAR, MIRABEL, Cumulative Thread model, RamCO, Reefs at Risk) and species-distribution/climate envelope models (e.g. the GARP model type, EUROMOVE and Impacts of Climate Change). While the first estimate an indicator of biodiversity relative to environmental pressures without considering individual species, the latter predict the distribution of a defined group of species based on their specific climatic niches in relation to changes in the environment. These models require a large detail of information and are mainly used for regional studies; EUROMOVE covering the whole European continent being an exeption.

Selection of models to be described in detail

There are very few global models that have been specifically constructed to predict ecosystem services, except for GUMBO and MIMES. Therefore a broad range of models was reviewed with respect to their suitability for estimating ecosystem services provision. An extensive search of models was performed to gain on overview of models available, based on published scientific articles, handbooks and information from websites. The models were characterised by thematic coverage, input and output variables. A selection was made on the basis of thematic relevance to ecosystem services and biodiversity, frequency of use in global assessments, possibility of calculating different policy scenarios and upscaling (local models) and downscaling (global models) of results. Care was taken to include models from all relevant categories in Table 2.3 and all currently applied integrated assessment models were included that were relevant to ecosystem services (Table 2.1). Furthermore one land-use model, two scenario-building tools and two general economic models were included. For biodiversity models three indicator-based models and two models that estimate species distributions were selected. Biogeochemical models were chosen that incorporate humanmodified land as well. Five regional studies of ecosystem services were selected in order to compare their potential with the results from large, global modelling approaches. One of those regional modelling tools, InVEST, is currently used to provide a global assessment of ecosystem services, which has not been published yet, but will be very relevant for TEEB as soon as it becomes available.

Table 2.4 gives an overview of models used in different assessments, providing information on which models have been combined before and the scenarios that they were used together with.

Assessment	Model used	Spatial	Scenarios used	Description
		coverage		
OECD environmental outlook	ENV-Linkages, LEITAP, IMAGE, GUAM, FAIR, WaterGAP, N- balance, GLOBIO,	Global	Single baseline scenario with policy variants on climate policies and different types of carbon taxes	The OECD Environmental Outlook to 2030 explores possible ways in which the global environment may develop, emphasising the economic rationality of ambitious environmental policy and showing why it is desirable for the OECD to work with large developing countries such as Brazil, Russia, India and China (see also the MNP/OECD background report, MNP/OECD, 2008. Kok <i>et al.</i> , 2008)
GBO-2 Global biodiversity outlook	GTAP, IMAGE, GLOBIO	Global	Preliminary version of OECD baseline	At the request of the Convention on Biological Diversity (CBD) MNP carried out an investigation on possibilities for limiting the loss of global biodiversity. This was done in preparation for COP8, the 8th Conference of the Parties to the Convention held in Brazil in 2006. (sCBD, 2006; sCBD and MNP, 2007) (Kok <i>et al.</i> , 2008)
GEO 4	PoleStar, AIM, IMAGE, WaterGAP, EcoOcean, GLOBIO,	Global	Four contrasting scenarios: Markets First; Policy First; Security First; Sustainability First	UNEP GEO-4: Environment for Development shows how both current and possible future deterioration of the environment can limit people's development options and reduce their quality of life. This assessment emphasises the importance of a healthy environment, both for development and for combating poverty. (Kok <i>et al.</i> , 2008)
Ag IAASTD	GTEM, G-CGE, CAPSIM-C, IMAGE, SLAM, IMPACT WATER, WATERSIM, GLOBIO, Eco- Ocean	Global	Single baseline scenario with policy variants	The International Assessment of Agricultural Science and Technology Development (short title: the Agriculture Assessment) assesses developments in agriculture in relation to policy goals, such as reducing hunger and poverty, improving living conditions in rural areas and preserving the quality of the environment and biodiversity. This assessment focuses strongly on the role of technology and agricultural expertise (Kok et al., 2008).
МА	IMPACT, IMAGE, WaterGAP, Ecopath, Ecosim, Species area	Global	4 scenarios: Global Orchestration, Order from Strength, Adapting	The Millennium Ecosystem Assessment set out to assess the consequences of ecosystem change for human well-being

Table 2.4: Overview of combinations of models and scenarios used in (large) assessments

Assessment	Model used	Spatial coverage	Scenarios used	Description
	relationship (SAR)		Mosaic, TechnoGarden	and to establish the scientific basis for actions needed to enhance the conservation and sustainable use of ecosystems and their contributions to human well-being. Biological diversity plays a critical role in underpinning ecosystem services (MA, 2005).
WWDR-1,2 and 3	No model projections used	Global		The World Water Development Report of the United Nations looks at water demand and changing water supply due to different socio-economic drivers and climate change (World Water Assessment Programme 2009).
World Water Vision		Global	3 scenarios that focus on issues of water supply and demand, conflict over water resources, and water requirements for nature.	The World Water Vision was conducted by the World Water Council to increase awareness of a rising global water crisis (Cosgrove and Rijsberman 2000). While only a subset of water-related issues and variables were quantified, the scenario narratives extend beyond issues specific to water, including lifestyle choice, technology, demographics, and economics. Some of these additional themes were explored quantitatively in background studies (Kok <i>et al.</i> , 2008).
European Environment Outlook	PRIMES, POLES, Prometheus, TIMER, CAPSIM, IMAGE, FAIR, RAINS, EMEP, WaterGAP, UWWT	Europe	Baseline with policy variants	The European environment outlook report assesses the environmental consequences of key socio-economic developments in Europe, particularly with regard to climate change, air quality, water stress and water quality (EEA, 2005).
CA - Comprehensive assessmentof water use in agriculture	Watersim, APSIM	Global	One scenario	The Comprehensive Assessment addresses multiple use, feedbacks, and dynamic interactions between water for production systems, livelihood support, and the environment. It analyzes past and current water development efforts from the perspective of costs, benefits, and impacts, considering society (economic and rural development, increased food security, agricultural development, health, and poverty) and the environment (conservation and degradation of

Assessment	Model used	Spatial coverage	Scenarios used	Description
				ecosystems and agriculture, Comprehensive Assessment of Water Management in Agriculture, 2007)
COPI bio I	GLOBIO	Global	OECD baseline scenario	The COPI study estimated the costs of policy inaction in respect to ecosystem service loss by linking biodiversity loss to changes in ecosystem service provision (Braat and ten Brink 2008).
EURURALIS	LEITAP (modified version of GTAP), IMAGE, CLUE	Europe	4 scenarios with 12 different combinations of policy variants	EURURALIS is a scenario study on the future of rural areas in the EU, assessing the impact of policy measures like the Common Agricultural Policy and biofuel policies (Rienks, 2008).
INSEA Integrated sink enhancement assessment	AROPAj, EFEM- DNDC, EURO- FOR, PICUS, FASOM, AGRIPOL, EPIC			The INSEA focuses on the enhancement of carbon sequestration within Europe and its effects on land use (especially agriculture and forestry).
ATEAM	MAGEC, SUNDIAL, ROTHC, GOTILWA+, EFISCEN, FORGO- HYDRALL, LPJ, STOMATE, Mac- pdm,RHESSys, FORCLIM	Europe	4 scenarios with different policy options	The ATEAM developed a methodology to assess the vulnerability of ecosystem services to climate and land use change, biodiversity loss and pollution (Metzger <i>et al.</i> , 2006).
Naidoo <i>et al.</i> 2008 (PNAS 105, 9495-9500)	TEM, WaterGAP	global		Ecosystem services modelling: Carbon sequestration (TEM model), carbon storage (Global Land Cover 2000 map), grassland production of livestock (FAO and other databases), water provision (WaterGAP)
Swallow <i>et al.</i> 2009, (Environ. Scie. & Policy, in press)	SWAT	Lake Victoria basin, East Africa		Ecosystem services: erosion regulation (SWAT), water yield (SWAT), agricultural production

2.3.2 Analysis of selected models

Information presented on the models in the Appendices

The sections below describe information presented on the models in Appendices 1.1 - 1.5 and summarises some of the findings from the analysis. Appendices 1.1 and 1.3 follow the format of a review of ecological models carried out by the EEA (EEA, 2008), and information on four of the models (IFs, EUROMOVE, IMPACT-WATER and CLUE) has been taken from that report. It was not possible to complete all the cells within the tables for all models, e.g.

because no information on that topic was found; indicated in the tables as "*unknown*" - or an empty cell. Other topics were not done or covered by the model (indicated as "*not available*") or refer to variables that are outside the scope of the model, e.g. cultural services for biodiversity models (indicated as "*not applicable*").

Technical description of models

Appendix 1.1 summarises technical information on the models, including their developmental history, accessibility, calibration, validation, spatial coverage and resolution. Most important is the information on data input (i.e. key drivers of the model), model output and level of integration within the model (i.e. the degree to which different modules/submodels are interlinked and feedbacks between components incorporated). An example of the information provided is given in Table 2.5 for IMPACT-WATER, an integrated assessment model that consists of a hydrological and a partial economic model related to agriculture. The row "model type" gives the categorization of the model according to Table 2.3.

The row "input (key drivers)" gives information about which main drivers and input variables are needed. IMPACT-WATER focuses on agriculture and like many other models requires information about future population trends to determine food demand, while climate and water availability limit plant (crop) production. While socio-economic models and integrated models generally all start from population development (from scenario-inputs) biophysical models start from climate and land use change. The next row "output" presents the variables that are generated by the model, including biodiversity and ecosystem services related variables if available. IMPACT-WATER covers food production from crops and livestock and also gives information about per capita food supply.

Key input and key output variables give information on how different models might be linked, for example biodiversity or biochemical models for which land use change is the key driver might be linked via land use models (key output: land use change) to socio-economic models that predict the effects of policy scenarios on the socio-economic drivers of land use change. Different types of biodiversity models focus on different key pressures; while land use change is used as the main input for most models that calculate biodiversity indices, climate change is the key driver of the species-distribution models (GARP and EUROMOVE).

It is important to consider the spatial and temporal scale a model works at (for input and output variables) relative to the scale relevant for ecosystem services, and to consider issues involved in upscaling and downscaling of results. The different models have to be compared in terms of detail they can provide relative to what is required for different purposes. Geographical and temporal resolution is covered in the next two rows. Most models are spatially explicit with grid sizes of 0.5 to 5°. Others like IMPACT-WATER aggregate data on a national (especially economic models, GTAP, EnvLinkages, IFs) regional or ecosystem/biome scale (CENTURY, GUMBO) or use more natural units like catchments (especially for hydrological models: SWAT, WaterGAP). Some models like SAVANNA are more flexible in their spatial resolution but covering a large area leads inevitably to a coarser resolution. Temporal resolution varies between daily, monthly or annual time steps. While the model might use daily time steps for calculation, output might be aggregated on an annual level. Biophysical models generally use smaller time steps. This does not necessary cause any problems when linking models as socio-economic models would predict annual land-

cover while biophysical models use this as an input for modelling daily or weekly nutrient and water balances.

"Analytical technique" refers to the type of maths behind the model. Economic models are mostly equilibrium models. Empirical-statistical models are based on statistical relations from a dataset. Dynamic system models are complex models based on causal processes and also include internal feedbacks. Interactive models require participation of users or expert judgment (EEA, 2008).

Model name	IMPACT -WATER
Full model name	International Model for Policy Analysis of Agricultural Commodities and Trade
Model type	Integrated model (partical equilibrium + hydrological model)
Subtype	Agriculture
Thematic coverage	Agriculture, fishery, water (related to agriculture)
Input (key drivers)	Income, and population growth (to determine food and non-agricultural water
	demand), Crop productivity (depends on various drivers, incl. agricultural
	research), Change in available agricultural area over time, climate parameters,
	plus irrigation and water supply information, trade policies
Output (key	Crop area, yield, production, demand for food, feed and other uses, prices,
variables)	Livestock numbers, yield, production, demand, prices, Net trade in 32 agricultural
	commodities (virtually all global food trade), Percentage and number of
	malnourished preschool children, Per-capita calorie availability from foods
Geographical	Global: 115 regions and countries, intersected with 126 river basins (281 spatial
coverage and	units), including EU-15 and eastern Europe
resolution	
Temporal coverage	Base: 2000 until 2020/2025/2050, with annual time steps
and resolution	
Analytical technique	Partial equilibrium model (sectoral agricultural model)
Nodel developers	International Food Policy Research Institute (IFPRI) of the CGIAR Network
and/or owners	1 - territory of DMDACT
Ist version of initial and the sector of th	
mstory	The partial equilibrium model INIPACT was coupled to the hydrological model
	(water availability) on agriculture production
Target Groun/users	Aim was to help achieve long-term vision and consensus among policy makers
rarget Group/users	and researchers about the actions that are necessary to feed the world in the future
	reduce poverty, and protect the natural resource base. IMPACT has been used in
	numerous international environmental assessments (such as World Water Vision
	Millennium Ecosystem Assessment). Currently being used in UNEP's Global
	Environmental Outlook (GEO-4) and the International Assessment of Agricultural
	Science and Technology for Development (IAASTD).
Calibration	Model uses the UN Medium Variant Population growth projections, and follows
	the global hydrology patterns embodied from the climate data provided by the
	Climate Research Unit of the University of East Anglia. The streamflow and
	runoff data have been calibrated to WaterGAP of the University of Kassel.
Validation	IMPACT has been used in a historical counterfactual analysis that accurately
	produced the historical record of agricultural production and consumption from
	1970 to 2000.
Uncertainty analysis	Climate uncertainty is explored with the use of alternative GCM scenarios, which
	are downscaled to the spatial units of IMPACT.
Key reference	Rosegrant <i>et al.</i> (2005) International Model for Policy Analysis of Agricultural
	Commodities and Trade (IMPACT-WATER): Model Description (available at
	www.itpri.org/themes/impact/impactwater.pdf)
Level of integration	Water is the key environmental component which is directly integrated into the
	model structure. Response to water availability is measured in terms of yield loss
	(relative to full potential). IMPACT-WATER is the only model that takes into

 Table 2.5 Example table from Appendix 1.1 (for all other models see Appendix)

The rows "calibration", "validation" and "uncertainty analysis" provide information about whether or not such analyses have been done and give references if applicable. The "level of integration" refers to the interlinkages between the different components and submodels and the internal feedbacks. IMPACT-WATER for example is the only model that considers water availability for irrigation purposes when estimating crop yields while the other models assume that sufficient water is available for agriculture. The "link to other models" gives studies in which the model has been linked (or used together with) other models, providing information about which models can be used in combination. IMPACT-WATER for example has already been combined with two of the large assessment models, IMAGE and AIM. The row "ease of use/accessibility" mainly indicates whether the model is freely available (either on a website or on request from the authors). However, training is required for all models to be able to operate them and interpret their results. Hence, in case one wishes to use a certain model for an assessment contact and cooperation with the developers/owners is essential.

Key references and the link to the model website are given for a more detailed description of the model and its outputs. The publication record differs for the various models. Some like AIM and PoleStar have little or no publications in peer-reviewed journals but they have been used in global assessments. Others, such as many biophysical models have many peerreviewed publications but they have not been included in global assessments yet. For MIMES no outputs have been published although global maps are available in a PowerPointpresentation on the web, which indicates that a global analysis has been done with this model².

The diagram within the row "model structure" gives an overview over the different model components and the links between them. For the IMPACT-WATER model it can be seen that water supply is calculated based on a hydrological model with climate as main driver while water demand is estimated from food demand and production via a socio-economic module. Ecosystem services can be approached from two different directions. One can estimate service demand (e.g. food or water demand based on human population size and water needed for agriculture and industry) or service supply (e.g. carbon sequestration, erosion control). The relationship between supply and demand is needed for economic valuation of services and it is also necessary to differentiate between potential services and services that actually benefit humans. While mangrove forest have been shown to reduce flood risk at coasts this only benefits humans if the area they protect is actually inhabited. Pollination and pest control services also only apply to land used for agriculture or forestry. The models differ in whether they approach a certain service from the supply or demand side or both. While WaterGAP, IMPACT-WATER and the IIASA models estimates both water supply and water demand separately, IMAGE estimates global food demand and allocates land accordingly to agriculture to match this demand.

Coverage of ecosystem services

Appendix 1.2 provides details on the ecosystem services covered by the models either explicitly or implicitly. Ecosystem services (and indicators of ecosystem services) listed here can either be input or output variables, as well as intermediate variables. Some of these ecosystem service indicators might be estimated by the model while not commonly extracted as key output variables. For example biogeochemical models usually contain a water cycle module and enable the calculation of water supply (precipitation minus evapotranspiration), and hydrological models contain a vegetation-submodel, that estimates primary production. As an example the table is shown for three of the biogeochemical models (Table 2.6). While PICUS focuses on forests and therefore only provides information about timber production, Agro-IBIS is a general vegetation model that includes next to plant production also a hydrological module estimating water supply. SAVANNA is a whole biome model including crop, timber and livestock production as well as water supply. The supporting services covered within the biogeochemical models are quite similar; most include a nitrogen cycle module and estimate primary productivity. An exception is LPJmL which currently does not include nitrogen although this is an important factor limiting plant growth (LeBauer & Treseder, 2008). Currently, joint research between PIK, WUR and PBL is started to redress this missing factor in conjunction with other yield limiting and reducing factors such as water (like already covered in IMPACT-WATER), pests and land management (included in CENTURY) in a combination of IMAGE and LPJmL.

Next to the biogeophysical models (marine and terrestrial), supporting services are only covered by a few of the integrated assessment models, and mostly those also estimate nitrogen cycling, net primary production or soil formation. As regulating services, carbon sequestration and water regulation are mostly covered. Carbon sequestration and carbon storage has been the focus of climate change scenarios starting with IPCC and mitigation strategies and

² http://www.gulfofmaine.org/EBMWorkGroups/docs/Roelof-Boumans-presentation-at-Oct2007-WorkGroup1-2-meeting.pdf

different policy options have been examined by most integrated assessment models as well as global vegetation models. Cultural services are only covered by MIMES/GUMBO and several of the marine models, and mainly refers to recreation. The marine models selected are generally biophysical models with complex biotic interactions and focus on the effects of fisheries on the trophic system.

	Model name	PICUS	Agro-IBIS	SAVANNA
S	Provisioning services	timber production	water supply, crop production,	livestock production, grass and timber production, water supply (runoff, deep drainage)
ervice	Supporting services	nitrogen cycling in forests	NPP, SOC, N balance	NPP, nutrient cycling
system so	Regulating services	carbon sequestration, soil moisture (water cycling)	carbon flux, N leaching, water regulation	water balance
Ecos	Cultural services	Not available	Not available	Not available
ity	Species diversity	forest species composition (diversity, naturalness indicators)	Vegetation composition (functional types)	Species distribution and abundance (plants + animals)
liversi	Genetic diversity	Not available	Not available	Not available
biod	Ecosystem diversity	forest species composition	Vegetation composition	community composition

 Table 2.6. Example of Appendix 1.2 tables for some biogeochemical models

Appendix 1.2 also contains information on measures of biodiversity, split into species diversity, genetic diversity and ecosystem diversity. Most biodiversity models focus on indicators of species diversity, while genetic diversity is hardly incorporated into biodiversity modelling. For studies on genetic diversity on the species level look at Watson-Jones *et al.*, (2006), Silvertown *et al.*, (2009, experimental) and Avise (2008).

Ecosystem/landscape diversity modelling is seldom explicitly included as well (Roy & Tomar, 2000); however, it should be possible to derive an index of landscape diversity from spatially explicit land cover models. Global vegetation models (biogeochemistry models) provide an indication of natural vegetation composition, although commonly limited to some different functional groups of plants that are distinguished. On the species level there are two different approaches for deriving indicators of species diversity, while climate envelope models actually model the distribution of specific species. The later require detailed information on species presence for model calibration. As biodiversity is generally not covered by any of the other models, one of the biodiversity models has to be linked to one of the other general models to provide an indication of biodiversity if required.

Usability of selected models for TEEB

Appendix 1.3 summarises the most important information from the first tables on drivers, pressures and ecosystems services, and the detail and range of those covered by the different models. For an example see Table 2.7. "International acknowledgement" includes information on the use of the models in assessments and the amount of publications available. MIMES is a
relatively new model which has not been published or used in any assessments yet, which makes it difficult to evaluate its strengths and weaknesses. Other models like AIM have been used successfully in global assessments, but have not resulted in many publications in peer-reviewed journals. Biogeophysical models have an extensive publication record, but they have not been included in global assessments yet (presumably because crop production is covered by all integrated models as well, although mostly less detailed and mainly from the demand side), while hydrological models are often included in global assessments. Biogeochemistry models have been used mainly for carbon sequestration and climate change effects on vegetation distribution and crop production.

The "width of spectrum of drivers" summarizes the information on input/drivers from tables in Appendix 1.1 and gives an indication whether the model is mainly driven by socioeconomic (directly, integrated assessment models, socio-economic models), land use change (biodiversity models and biophysical models) or climatic and environmental variables (rainfall, soil fertility, biophysical models) and whether there are several independent drivers.

Model name	MIMES	AIM	IGSM	IIASA Integrated Assessment Modeling
				Framework
International acknowledgement	Not published yet, large number of collaborators, high level of publicity, including politics (see website)	Has been used in many assessments (IPCC, GEO), widely accepted (esp. in Asia), little scientific literature.	Widely accepted, many publications	Widely accepted, many publications, used in IIASA assessments (e.g Global Energy Assessment)
Width of spectrum of drivers	Key drivers are human population development and investment	Broad range of socio-economic drivers	Broad range of socio-economic drivers	Broad range of socio-economic drivers
Width of spectrum of goods and services covered	Very large, all areas covered	Provisioning (water, timber, food), and regulating (climate regulation, air quality, human health, flood damage)	Agriculture, climate regulation , air quality, human health, sea level	Provisioning, climate regualation
Richness of detail including sectoral detail	Very high: large number of variables and parameters	High	High amount of sectoral detail, especially in the energy sector (different energy sources), agriculture, transport, plus biogeochemical modelling	High
Possibility of upscaling/ downscaling	The MIMES at this stage represented a general model scalable in time and space to be applied in global, regional and	5° by 5° resolution, application on scale close to this or lower does not provide useful results	0.5° by 0.5° resolution, application on scale close to this or lower does not provide useful	5' by 5' resolution, application on scale close to this or lower does not provide useful results

Table 2.7: Example of Appendix 1.3 tables for some of the integrated assessment models

Model name	MIMES	AIM	IGSM	IIASA Integrated Assessment Modeling
				Framework
	local models		results	
Effects of European policies on global level?	Unknown	Yes	Yes	Yes
Operational access for TEEB	Model is available for download: http://www.uvm. edu/giee/mimes2/do wnloads.html	Model not available online	Model not available online	Models not available online
Known plans for maintenance and development	The different submodels for the ecosystem services are constantly improved by the users	Improvement of carbon cycle module; estimate the impacts of climate change on water resources, flood risks, forests, agriculture, coastal zones, human health (vector-born diseases) (especially in Asia); further developments concern water demand and trade modelling and a detailed crop production model with fertilizer and pesticide loads and N ₂ O emissions; fruit production.	Improvements on the resolution of the climate submodel	Various activities are ongoing related to modelling of bio-energy production, REDD-related carbon trade options, analysis of organic and precision farming and natural hazard mitigation strategies.

"Width of spectrum of goods and services covered" again gives the services that are explicitly or implicitly covered by the model. AIM and IGSM for example include indicators of flood damage and respectively sea level rise and they also include air quality and human health effects. Like MIMES, the regional approaches cover a wider range of ecosystem services, including tourism and pollination services. Naidoo *et al.* (2008) present a mapping rather than modelling of ecosystem services that is partly based on biophysical models but does not contain any predictions for future changes. However, their approach is based on land use and could therefore be linked to a land-use model to create a predictive model. The InVEST model has also been applied at a regional as well as on a global scale and demonstrates the possibility of using basic regional level models for global assessments.

"Richness of detail" refers to the amount of detail incorporated in the different submodules, e.g. the number of different economic sectors considered as well as the detail within the biogeochemical processes.

"Known plans for development" were inferred from statements placed on the model's websites as far as available, expanded with personal information. The time and resources for this study did not allow for a more systematic consultation of all models. Some models, such

as EUROMOVE or MIRABEL, are not developed any further, but most others are constantly updated with enhanced and additional modules and more detailed information. For MIMES, users are constantly adding their own submodels therefore there are for instance several different modules for cultural services (R. Bouwmans, pers. com.) and a marine application is also forthcoming.

Important developments within the described models in terms of economics of ecosystem services are the development of a water quality module for WaterGAP and AIM, further additions to the human health/disease module and inclusion of water demand in AIM; the integration of a general equilibrium interface into IMPACT-WATER and natural hazard mitigation modelling at the IIASA. At the IIASA work is focussing on carbon-related policy options like REDD, but also on organic agriculture and precision farming. Various institutes are working on the link between biophysical models (especially LPJ) and land use and economic models (IMAGE, MAgPIE). Within EcoOcean/EwE an MSA-like indicator for marine biodiversity is being developed. Earlier work on coupling EcoOcean with IMPACT is scheduled to be revisited, allowing for incorporation of feedbacks between ecosystem services and economics. Coupling of IMAGE with agro-econmic models, e.g. LEI-GTAP and IMPACT, has proved instrumental in exploring trade-offs between expanding some ecosystem services (e.g. bio-energy production, carbon storage and biodiversity) and others such as food provisioning. Ongoing and planned projects aim to extend and improve these analyses.

New models specifically focussed on ecosystem services are currently being developed at the PIK Potsdam in collaboration with other institutes and organisations. Their approach is to combine LPJ with forest models (4C), hydrological models (SWIM) and further new models to assess the effects of changes in land use and climate on biodiversity and the provisioning of ecosystem services on a regional to continental scale.³ At Lund University the focus is also on climate change and land use change effects on biodiversity and ecosystem services, for example carbon stocks, water availability and air quality. One of the models used in Lund is LPJ-GUESS which will be improved in terms of carbon-nitrogen coupling and plant dispersal⁴.

It seems that the current development is generally focussed towards the inclusion of (more) detailed biophysical models for an estimation of ecosystem services. Addressing effects of changes in ecosystem services (other than food production) on socio-economic developments will probably only be the next logical step after an increased understanding of the supply, demand and changes in ecosystem services as well as their substitutability has been reached.

Summary of models with respect to drivers, pressures and impacts

Appendix 1.4 summarizes the models with respect to the driver-pressure-impact framework: including which drivers and pressures are taken into account, which ecosystem processes are modelled and which indicators provided, and whether there a link to human well-being or monetarisation. Information is also included on land-use and whether models focus on natural land and/or managed land. Land-use is a key variable linking scenarios/policies/socio-economic developments with effects on biodiversity and ecosystem services provision.

³ http://www.pik-potsdam.de/research/research-domains/earth-system-analysis/projects/biodiversity/goalstatement

⁴ research program of Lund University, see: http://lucci.lu.se/wp5.html

Ecosystem services and biodiversity are also directly affected by changes in land-use (Foley *et al.*, 2005, Metzger *et al.*, 2006). An example of Appendix 1.4 is shown below for some of the (terrestrial) biodiversity models (Table 2.8). The main drivers included in most biodiversity models are climate change and land use change (habitat loss). Other pressures such as pollution are only covered by GLOBIO, MIRABEL and the SAR approach of the MA (MA, 2005d). None of the models deals with the effects of invasive species, despite their well documented impacts on global biodiversity. Biodiversity models do not directly include explicit policy options; instead these are fed into the models via their impacts on climate or land use. Next to biodiversity models and no link with human well-being is provided. On the other hand, all other terrestrial models do not provide indications of biodiversity. There are, however, several marine models, that cover both biodiversity and ecosystem services.

Model name	GLOBIO	Biodiversity intactness index	Species area relationship (SAR)	GARP- based species distribution models	EUROMOVE
Natural drivers and environmental pressures	change	None	Climate change	change	change
Human drivers	Land-use change, N deposition, infrastructure, fragmentation	Land-use	Habitat loss and fragmentation (land use change), N deposition	None (via greenhouse gas emissions)	Land-use
Policies	Via IMAGE	Via land use	Via land use	Via climate change	Via climate change and land use
Land-use	Spacially explicit (input variable)	Spatially explicit, classification: from protected to moderate use, degraded, cultivated, urban and plantation	Not spatially explicit (aggregated biogeographical units)	Spatially explicit	Spatially explicit
Biodiversity	MSA (mean species abundance of original species)	Biodiversity intactness index	Number of species	Number of species, species distribution	Number of species, species distribution
Ecosystem	Not	Not	Not applicable	Not	Not applicable
Ecosystem services	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
Economic value/human well-being	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable

Land-use has been pointed out as the crucial link in modelling before, not only between socioeconomic factors and ecosystem services but also as a potential handle for policy options (e.g. limiting land-use change by prohibiting deforestation, or creating protected areas). Most policy options (e.g. carbon taxes, subsidies, targets for use of biofuel) directly result in land use change by changes in the trade-off between different land uses. To effectively influence global habitat conversion these trade-offs between different land uses (e.g. agriculture versus forests) need to be explored more thoroughly.

2.4 Review of scenarios

2.4.1 Selection of scenarios

There are three different types of scenarios (Börjeson et al., 2006):

- **Baseline trend scenarios** (predictive scenarios) assume that current trends will continue in the future, and may include policy variants for different likely developments of sectors based on near-future decision alternatives. They address the question 'what will happen?'
- Normative scenarios (or pathway or vision scenarios) describe a desirable future or set a specific goal for the future (e.g. halting biodiversity loss by 2010 or stabilizing greenhouse gas emissions at 450 ppm CO₂ equivalents) and explore possible ways to reach that goal. They address the question 'how do we get there?'
- **Explorative scenarios** (forecasting, descriptive scenarios) work the other way around, they are created to forecast the effect of specified measures (policies) on future development and conditions. They address the question 'where do we end up?' Explorative scenarios either address the effects of different policies or other measures (strategic) or alternative developments of other factors (external).

There is a gradual difference between predictive/trend scenarios that incorporate possible future decisions and explorative scenarios, the latter considering longer time scales and more profound changes. They are usually more "visionary" than trend scenarios and divert from current developments, by not aiming at what is most likely to happen but to look at other, less likely options (plausible alternative futures).

The focus of this scenario review was on scenarios that were used in combination with the selected models to ensure that a discussion of results and assumptions of model and scenario outputs is possible. Further criteria for scenario selection were the international acknowledgement (frequency of use/reference) and the scenarios had to be relevant in terms of a focus on policy options instead of a focus on changes in lifestyle (e.g. diet change scenarios, Stehfest *et al.*, 2009).

2.4.2 Review of scenarios

Description on scenarios

Following a similar format to the model descriptions, Appendix 1.5 (for example see Table 2.9) presents general information on the different scenarios, while Table 2.10 summarises the information relevant for the TEEB. The tables start with a general description of the narrative behind the selected scenario and the 'correspondence with other scenarios'. Most scenarios

used are based on the four normative scenarios of the Global Scenario Group (GSG) with some variation in the implementation.

There are three 'types of scenarios': normative, explorative and trend scenarios. The GSG scenarios are the only normative scenarios considered; however, some of the climate policy variants of the OECD baseline (which is a trend scenario) also use a normative approach. Global assessments mostly use explorative scenarios that are formulated in a narrative way (e.g. Millennium Ecosystem Assessment, Global Environmental Outlook). Another common approach is to compare a baseline that assumes business as usual with a number of specified policy variants (e.g. OECD Environmental Outlook, IAAST Ag Assessment).

The next row gives the 'type of policies' that have been specified within the scenario. The descriptions of most scenarios are rather vague, with little detail specified on which policies or developments are considered for specific sectors. For the implementation of these scenarios a large amount of work is necessary to translate those general, qualitative trends with quantitative model inputs. The focus of most scenarios lies on trade restrictions (none in GSG 'open market' and related scenarios versus national trade restriction in GSG 'fortress world' and related scenarios) and policies related to greenhouse gas emissions.

The following rows give information about the development of the scenarios, on aims, the developers and whether or not stakeholders were involved. 'Domains considered' refer to the areas that were considered during scenario development and incorporated in the models used. The row 'main actors' indicates which are considered to be the socio-economic drivers behind future changes. For most assessments narrative scenarios were formulated that had to be translated into drivers of change. Key drivers addressed in the scenarios were:

- population development;
- economic development, including changes in per capita GDP and economic structure;
- technology development, i.e. increased nutrient and water use efficiently, increased areabased crop yields;
- human behaviour (lifestyle); and
- institutional factors (trade barriers, taxes, subsidies).

For example GSG 'open market' and related scenarios consider economic issues and trade as the main determinants of future development, cost-benefit relations will determine land use allocations in these types of scenarios. The GSG 'policy reform' scenario assumes global policies to be most important, which can include the restriction of land use (e.g. ban on deforestation, creation of conservation areas/nature reserves). The GSG scenario 'new sustainability' or the related GEO-4 'sustainability first combine effects of governmental policies with individual life style changes (e.g. changes in diet) as main drivers for development.

Table 2.9: Examples of scenario characte	erisation tables from Appendix 1.5
--	------------------------------------

Scenario name	GEO-4: Sustainability First
Description	Sustainability First gives equal weight to environmental and socio-
	economic policies, accountability, and it stresses transparency and
	legitimacy across all actors. It emphasizes the development of
	effective public-private sector partnerships not only in the context of
	projects but in the area of governance, ensuring that stakeholders
	across the environment-development discourse spectrum provide
	strategic input to policy making and implementation.
Correspondence with other	GSG new sustainability, SRES B1, MA Adapting Mosaic, WWV
scenarios	Values and Lifestyles, WBCSD Jazz.
Type of scenario	Explorative
Policies specified	Strong global management, climate mitigation, air pollution, protect
	species diversity and ecosystem services.
Purpose	UNEP GEO-4: Environment for Development shows how both
	current and possible future deterioration of the environment can limit
	people's development options and reduce their quality of life. This
	assessment emphasises the importance of a healthy environment,
Authonizing on the sector	UNED. The segnation ware developed through a length.
Authorizing environment	collaborative process that began with four of the CSC scenarios
	which were then refined through a series of regional and global
	meetings (Raskin and Kemp-Benedict 2002) with input from the
	IPCC's Special Report on Emissions Scenarios. The emphasis of the
	process was on refining the narratives and giving them regional
	texture A consortium of modeling teams elaborated on different
	aspects of the scenarios (Potting and Bakkes, 2004).
Stakeholders involved in the	Expert Group Meeting
development	
Time horizon and resolution	2050
Spatial coverage and	Global
resolution	
Domains mainly considered	Population, economic activity, government (energy prices, taxes,
	environmental policies), lifestyle, technology, land use limitations.
Main actors	Economy, government and individual behaviour
Comments	
Scenario name	OECD-ccglobal2008
Description	This policy variant implies an immediate implementation of carbon
Correspondence with other	GSG policy reform MA TechnoGarden GEO Policy First WWW
scenarios	Technology WBSCD GFOnolity
Type of scenario	Trend (explorative)
Policies specified	Uniform global carbon tax, starting in 2008
Purpose	The focus of the Outlook is the critical environmental concerns
The second se	facing OECD countries, but the study is global in scope. The aim is
	the exploration of options to reduce climate change and greenhouse
	gas emissions.
Authorizing environment	OECD
Stakeholders involved in the	Unknown
development	
Time horizon and resolution	2005 to 2030 (policies) respectively 2050 (impacts)
Spatial coverage and	Global, for policies: OECD, BRIC and the rest of the world, spatial
resolution	resolution of effects: 0.5° grid.
Domains mainly considered	Agricultural production and trade, energy sector (mitigation of
-	
	climate change, control of urban air pollution), sewage treatment.
Main actors	Global policies

sectors that put the greatest pressure on the environment, and resulting environmental impacts. The focus of the Outlook is the critical environmental concerns facing OECD countries, but the study is global in scope. Global economic patterns were modeled using the OECD's JOBS model. These drivers were then used as inputs to the PoleStar System to assess potential environmental impacts in the scenarios.

The different baseline with policy options scenarios, for example the OECD-ccglobal2008 shown in Table 2.7, focus on the impact of policy options, therefore global or national governmental policies are the main actors in these. The focus of the OECD environmental outlook was climate change mitigation, therefore the policy options consider different targets for CO_2 emissions either globally or for the OECD countries. The consequences of land use changes resulting from the policies were examined.

Table 2.10 summarises the information for all groups of scenarios. Part of this table was taken from Westhoek *et al.* (2006). An estimation is given for the international acknowledgement and the richness of detail included, and also a list of models that have been used with the specific scenario, indicating for which models scenario inputs have been specified already. As the IMAGE model has been included in many assessments this model has also been used together with most of the scenarios.

Table 2.10 Scenario summary	with information	relevant for TEEB
-----------------------------	------------------	-------------------

Scenario name	Туре	International acknowledgement	Width of spectrum of drivers	Richness of detail including sectoral detail	Models that have been used with scenario
IPCC-SRES	Explorative	Very high	Wide set of quantitative indicators	Limited	AIM, IMAGE
MA	Explorative	High	Wide set of quantitative indicators	High	IMPACT, IMAGE, WaterGAP, EwE, SAR
GEO-4	Explorative	High	Wide set of quantitative indicators	High	AIM, IMAGE, PoleStar, WaterGAP, EwE & EcoOcean
GSG	Normative	High, sres, ma and geo-scenarios are based on gsg scenarios, however, gsg scenarios are normative instead of explorative	Narrative	Limited	PoleStar
OECD baseline	Trend with policy options	High	Wide set of quantitative indicators	High	WaterGAP, IMAGE, GLOBIO
IAASTD baseline	Trend with policy options	Moderate	Wide set of quantitative indicators	High	IMAGE, IMPACT- WATER, GLOBIO, EcoOcean (EwE)
EURuralis	Explorative with policy options	Moderate (high within europe)	Moderate	Moderate	GTAP, IMAGE, CLUE
WWV	Explorative	Limited to water management community	Moderate	Moderate	
WBCSD	Explorative	Limited	Moderate	Moderate	
ATEAM	Explorative with policy options	Moderate	Moderate	Moderate	

2.5 Insights, gaps, strengths and weaknesses of the various approaches

2.5.1 Models

There are several approaches towards global mapping and modelling of ecosystem services. For example, Naidoo *et al.* (2008) combine databases on livestock production with GIS data on carbon storage and modelling of carbon sequestration and water supply for mapping purposes with no integration of the different components. The global ecosystem models GUMBO and MIMES are meta-models that make use of well-established correlative relationships between different variables that are incorporated in mechanistic models like AIM, IMAGE, CLUE, WaterGAP, CENTURY and BIOME. Their advantage is that by using this short-cut they require less computational effort, and the higher degree of inter-linkages between the different components as well as the inclusion of feedbacks between the different modules. InVEST and ATEAM take a similar approach for local/regional ecosystem service modelling. Common to all these modelling approaches is that they build on existing models by either incorporating them or equivalent modules, increasing mainly the inter-linkages and feedbacks between components.

MIMES is very flexible in the respect that different submodules exist for certain services so that the user can (and must) chose the most appropriate one. Furthermore, own modules can be constructed and included although this requires knowledge of the model construction and the relationships that are to be modelled. InVEST allows different levels of detail to be included depending on data availability for the specific region.

The incorporation and integration of the different components (modules) and the interactions and feedbacks between these is one of the crucial points in modelling. Some important points that need to be covered/addressed by the models are:

- Does irrigated agriculture take into account water availability? This is only done within IMPACT-WATER while many other models assume that sufficient water is available for irrigation (i.e. no link between water supply and demand)
- Are there feedbacks between changes in land use/climate/ecosystem services to socioeconomic development? Most models do not include this crucial link, except for food and water provisioning. However, MIMES and GUMBO do include more feedbacks. These feedbacks are essential if one wants to examine the costs and benefits of measure that aim to maintain biodiversity and ecosystem services. If the feedbacks from services to economies are not included then only the costs of these measures can be estimated, and not the benefits.
- Are the drivers modelled explicitly or are they assumed to follow a long-term trend?
- Are differences in technology incorporated (i.e. fishing-techniques, grazing versus stablefed livestock, irrigation and fertilization)? Different agricultural management systems are explicitly included in the CENTURY model.
- Are dynamic processes and time lags incorporated? Like feedbacks, these are little considered, also due to the fact that little is known about exact thresholds in ecosystem service provision and minimum requirements before an ecosystem service is lost.

Process-based integrated assessment models (which were usually developed for other purposes than ecosystem service modelling) include a variety of modules that are potentially relevant to ecosystem service estimation. Although many commonly used ecosystem service indicators are calculated, most are not key outputs but are included in some intermediate step. Such general integrated models also contain socio-economic modules that cover the whole breadth of driver-pressure-state-impact relationships, although they often lack response feedbacks. The climate policy response model FAIR has been developed as part of the IMAGE framework and is used extensively to explore alternative international climate regimes with consideration of effectiveness, efficiency, equity and cost/benefit estimates. A somewhat similar response model is under development to address broader human development and sustainability policies such as the UN MDGs. MIMES and GUMBO are the only models that incorporate feedback from ecosystem services to economic development.

As integrated assessment models mainly consist of interlinked sectoral models, the use of separate sectoral models in general has no advantages over integrated models which are usually better linked than a collection of sectoral models. However, for specific questions the use of sectoral models that provide a higher level of detail (e.g. forestry models that include different management options) or incorporate relevant processes can be necessary. Figure 2.6 presents different ways of combining models for an assessment all with different advantages and disadvantages. Using a single model/model combination as in Figure 2.6 (A) has the advantage of ensuring the highest possible degree of consistency while depending heavily on the underlying assumptions. The other extreme would be to use a large number of specialized sectoral models (one per service) under the same scenario inputs and assemble the output of all models. This can be quite risky, however, as the assumptions (and therefore also the output) of the different model might be conflicting. The most advisable combination for the modelling of ecosystem services at the current stage would be to use a combination of different models unified by one central integrated assessment model to provide consistency between the models. The optimal approach would be to use two different integrated models (for examples MIMES and IMAGE with several other more detailed sectoral models linked to IMAGE) and compare the outputs of the two.

Figure 2.6: Different modelling options: (a) represents the COPI-approach of linking all ecosystem services to biodiversity derived from a combination of two models. (b) represents a combination of different sectoral models linked via an integrated assessment model to ensure the consistency of the scenario-input. (c) represents the modelling of ecosystem services by a series of sectoral models, that derive the scenario-input independently.

For different ecosystem services different spatial and temporal scales are relevant for supply and demand (Hein *et al.*, 2006). Carbon sequestration is acting on a global scale, while water supply is a regional (watershed) phenomenon and soil fertility maintenance or food production occur at much smaller scales. One might expect that regional modelling approaches would be more suitable to capture small-scale processes/ecosystem services. For example, Graymore *et al.* (2008) found that indicators of sustainable development developed for national and global assessments were unable to capture processes on the regional level correctly. However, the different modelling approaches (regional versus global) do not differ in the components they use for different ecosystem services; both approaches mainly use similar/identical small-scale biophysical models (WaterGAP, CENTURY, LPJ) to estimate water use and carbon sequestration while deriving crop yields and economic data from national databases. Therefore only the spatial resolution (the level of landscape detail that can be incorporated) differs between regional and global models. Furthermore, although the different spatial scales (climate regulation via carbon fluxes is a global process, while water supply acts at a basin scale) but all three of them are based on processes on a much smaller scale, namely plant uptake of water and carbon within a patch. Biogeochemical models generally base their estimations on such small-scale processes.

Biogeochemical models like SAVANNA that have been developed for specific biomes mostly focus on specific processes considered relevant for that particular system (e.g. treegrass competition in savannas, population dynamics of large vertebrates), while for other processes the level of detail might be equivalent or even lower compared to general vegetation models. It is therefore unclear whether they provide any advantages except in relation to very specific questions. However, a certainly relevant distinction between biomes/ecosystems would be the one between terrestrial and aquatic/marine systems.

The main difference between global and regional models lies in the development of scenarios and policy options and their effects on future land cover distributions. Local modelling approaches generally include more detailed information on current land cover. They frequently incorporate participatory modelling (expert judgements) for predictions of future land cover maps and determine which effects certain actions would have (e.g. Videira *et al.*, 2009). Regional models also focus more on lower-level, smaller-scale management options. Expert opinions and estimates are sometimes also the basis of ecosystem service quantification, instead of model estimates. These approaches are only feasible for rather small areas and it would be difficult to extrapolate such results to a global level, but on the local level they probably provide better estimates and by including stakeholders in the development of the assessment they also create a large base for actual measures.

The main constraint on ecosystem service modelling is that the data available for different ecosystem services are scarce and on a very coarse scale (Chan *et al.*, 2008); the same applies for information on human management practices. Little is known about critical thresholds and time lags between biophysical effects and ecosystem service impacts, and the possibility for and time-scale of the recovery of ecosystems. Consequently these issues/processes are not addressed in models.

One of the challenges in modelling ecosystem services is the incorporation of human managed lands, including various management options compared to natural systems (Kucharik and Twine, 2007). For the estimation of future ecosystem services and biodiversity land-use change is an important pressure, which must be spatially modelled. Agricultural models like the CENTURY model include this kind of detail for agricultural practices. Land cover models or modules within larger models are important intermediate steps/links between socio-economic and biophysical models/modules.

Another important point is that feedback links between environmental conditions and socioeconomic development are usually missing (except in the cases of GUMBO and MIMES). While socio-economic developments affect ecosystem services, a reduction in ecosystem service provision does not result in any consequences for economic development. This lack of consequences (within the models) makes it impossible to estimate the benefits of measures to maintain ecosystem services and only the costs of those measures are included. The loss of ecosystem services might actually have no effect on economic development, but only as long as technological substitutions are available (e.g. soil nutrient loss can be compensated by fertiliser input as long as enough money is available to purchase fertilizers; Swift *et al.*, 2004).

One of the ideas behind the concept of ecosystem services was to provide an argument for the conservation of biodiversity based on the assumed close link between the two. Recent studies have examined whether areas selected for biodiversity conservation are actually also beneficial for ecosystem service provision; which did not seem to be the case for the services considered by Naidoo *et al.* (2008). Both biodiversity and ecosystem services are tightly linked to land cover/land use issues although not in all cases in the same way. There are, however, ecosystem services that are very closely linked to biodiversity, for example bioprospecting, pollination and pest control. These include services that are difficult to quantify and biodiversity might be an appropriate indicator.

Assessment of costs and benefits of policies for ecosystem services and biodiversity

It has become clear from Task 1 that there is still limited knowledge on the consequences for human societies of changes in ecosystem services. Feedback of changes in ecosystem services and biodiversity on socio-economic developments is lacking within most of the current models. Quantitative information on this feedback, however, is crucial in estimating costs and benefits of different policies aiming at the conservation of biodiversity and ecosystem services. Up to now mainly the effectiveness (*i.e.* the consequences for biodiversity and some ecosystem services) and in some cases also the costs (Lewandrowski *et al.*, 1999, Sathaye *et al.*, 2006, Naidoo & Adamowicz, 2006, sCBD, 2006, OECD, 2008, Kindermann *et al.*, 2008, Butler *et al.*, 2009, Venter *et al.*, 2009) of these policies have been assessed.

Within the Global Biodiversity Outlook (sCBD, 2006, sCBD & MNP, 2007) the effects of six different scenarios on global biodiversity, nitrogen deposition and GDP (the later as an indicator of costs) were evaluated. The OECD Environmental Outlook (OECD, 2008) looked at the effects of policy options on biodiversity, climate change, water and air pollution, fisheries and also made an effort to estimate the costs of policy inaction. However, the authors state that the estimated costs serve rather to identify problems than to provide policy guidelines. Costs of policy inactions were also estimated by Braat et al., (2008). The cost estimates these assessments came up with are discussed in Chapter 3. Lewandrowski et al. (1999) estimated the costs of increasing the amount of protected areas in terms of GDP and food production, focussing on the loss of certain provisioning services as a consequence of protection. The studies of Sathaye et al. (2006), Kinderman et al., (2006) and Venter et al. (2009) estimate the costs in terms of carbon pricing to effectively reduce deforestation. Other studies compare the economic effects of several management options for small areas (Naidoo & Adamowicz, 2005, Naidoo & Adamowicz, 2006). Gallai et al., (2009) estimated the global value of pollination to agricultural production as the value of global production depending on pollination.

Valuation of ecosystem services is not so much about putting a number on global biodiversity or natural ecosystems (as done by Costanza *et al.*, 1997), but to compare the effects (in terms

of costs and benefits) of different managements or different policies. Valuation of ecosystem services requires a detailed knowledge of the supply of and demand for ecosystem services and the substitutability of different services (Bockstael *et al.*, 2000). Most current models focus on estimating ecosystem services in physical units which is sufficient to compare the positive and negative effects of different scenarios/policy options for separate ecosystem services. Trade-offs between different ecosystem services can be made explicit with these tools (Nelson *et al.*, 2009a). These physical measures of ecosystem services may afterwards be converted to monetary values to facilitate comparisons of trade-offs between different for comparing the costs and benefits of conserving/restoring certain ecosystem services with the use of substitutes (e.g. placement of bee hives versus use of natural pollinators, use of pesticides or biological control versus natural pest control, dams and dykes versus natural water storage and flood protection).

Issues of upscaling for economic values based on case studies are much more complicated than for biophysical units although biological processes are characterised by complex dynamics, interactions and non-linear effects of changes, which makes their modelling challenging, too (Chee, 2004). However, supply and demand functions necessary for the valuation of ecosystem services are often site specific and context-dependent (Bockstael *et al.*, 2000, Woodward & Wui, 2001). Therefore cost-benefit analyses are always context-dependent, as they depend on the location and the surroundings, the specific conditions and alternatives (Bockstael *et al.*, 2000) and results from case studies are difficult to apply for global modelling approaches. Butler *et al.* (2009) highlight that the effectiveness of carbon prices for reducing deforestations critically depends on the economics of alternative land uses. For global cost-benefit analysis therefore a much higher level of detail is required than for the estimation of the biophysical supply of most ecosystem services. More or less consistent data to support such detailed estimates, accounting for the highly inhomogeneous nature, are typically lacking.

Furthermore, for the estimation of costs of certain policies the issues and level of detail included varies greatly. For example, should the cost of increasing the extent of protected areas be measured mainly as direct costs of area purchase, establishment and maintenance (Balmford *et al.*, 2003, Naidoo & Adamowicz, 2005), are effects on reductions on other services (food production, timber production) the main costs (sCBD, 2006) and are secondary effects on food prices and global as well as local economies (social welfare costs, OECD, 2008) included?

Consequently models that address these issues have been applied at small scales. Balmford *et al.* (2002) reviewed five studies on the total economic value of different management/policy options, all of those came to the conclusion that the loss of ecosystem services was higher than the benefits of land conversion from low intensity use to high intensity use. Also general equilibrium ecological-economic models for the trade-off between different options have been used for smaller-system estimations. For example, Eichner & Tschirhart (2007) present a model of a marine ecosystem consisting of nine species to estimate optimal management for fish harvest and tourism. Another example is given in the study of Norgaard & Jin (2008) where they examine the effect of trade on the protection of domestic ecosystem services (*e.g.* food production) that can also be imported from elsewhere.

There is clearly an important role of cost-benefit analysis within the analysis of different policy options, however this may lie much more in the first phase of modelling the effects of

policies on the decisions of individuals and companies to determine the effects of these policies on land use changes. Furthermore, valuation is necessary to effectively design measure like payments for ecosystem services to distribute costs and benefits evenly between the different stakeholders (users and providers). These valuation studies/models can and should be conducted on a local level to take into account local circumstances. However, in terms of effectiveness of measures and trade-offs between different services at a global scale other measures than monetary values may play a role (e.g. biophysical units of demand, sufficiency).

2.5.2 Scenarios

While for most models the pressures (in scenario terms: direct drivers) climate change and land use change were found to be the key input variables, the description of scenarios focuses on (indirect) drivers like technological development, human population development, economics including trade and policies. Socio-economic models are necessary to translate/link the scenario drivers to the pressures. However, deriving quantitative input variables from primarily narrative scenarios is a crucial task and the process is often not well documented (but see MA, 2005d: scenarios in chapter 2 and chapter 9).

Scenario-building tools like PoleStar and Threshold 21 are used to derive policy options for normative scenarios and are crucial for backwards-modelling approaches (starting from a desired/specified end-stage).

Several large assessments have used scenarios that were broadly similar (SRES, GSG, MA, GEO, MIMES; MA, 2005a). These scenarios build on the GSG scenarios and focus on economic development and economic policies (fast versus slow growth, trade liberalisation versus trade barriers). Another focus is the energy sector and climate mitigation (e.g. in terms of policies aimed at biofuels or carbon taxes). Both economic and energy developments can have large effects on land use and thereby affect ecosystem services in the future. However, there are also some examples where environmental policies are explicitly stated in scenarios (e.g. the sustainability first and policies first scenario of GEO 4, SRES B1 and EURuralis scenarios). Within each scenario it is important to realize which processes depend on policy options and for which factors it is assumed that they follow long-term trends.

Which kind of scenario approach is most useful depends on the questions that should be addressed. Tests of the effects of specific policies require scenarios that are based on historical trends with different variants (e.g. OECD baseline + policy options), while exploratory scenarios examine different possible futures (more and less desirable ones and their consequences). They need more elaborate ideas about changes in various sectors to be able to explore possible future directions. If the aim is to find a means to reach specified goals normative scenarios are necessary. None of the presented scenarios is more suitable for future assessments than others. However, the effects of different specified policies can best be compared by a single baseline scenario with different policy options specifically developed for that purpose and the models that are going to be used. The formulation of such policy options and their incorporation into existing models is the crucial step in such assessments.

Scenarios like those built for global assessments provide opportunities to assess the possible effects of different policies on land use and climate change, which have been identified as the main pressures on ecosystem services and biodiversity. Current approaches, however, do not adequately distinguish between different types of land management (tillage versus non-tillage, organic farming, or environmentally sensitive versus intensive production). These

management types are expected to have important consequences for the delivery of ecosystem services within human-managed land. The global scenarios described (and the models they are used in combination with) do not incorporate sufficient detail to, for example, determine whether or not such measures are likely to be taken by individual farmers.

To develop meaningful scenarios to compare the effects of different policies on ecosystem services and biodiversity several factors have to be taken into consideration. The goal should be to assess the effects of different policy options on ecosystem services like water supply, agriculture, recreation, biodiversity and forest cover (i.e. carbon sequestration); therefore the scenarios should focus on the relevant drivers of biodiversity and ecosystem service change. The most relevant pressures differ between biomes and include habitat change, climate change, invasive species, overexploitation and pollution (MA, 2005). To be able to draw conclusions from the different options, the drivers need to be explicitly and separately included. The policy options should focus on the main pressures which have to be reduced/minimized. Possible policy options that could be compared are: payments for environmental services (PES), mitigation, off-setting, subsidies, caps and reduction of deforestation and degradation (REDD) options. The effects of most of these policies on and land and sea use changes and associated ecosystem services can be assessed by the models currently available.

2.6 General Conclusions and Recommendations

Available models: what they can do

Modelling tools available today are able to capture various forms of ecosystem service provisioning to a reasonable degree. Some services like water supply, carbon sequestration, food and timber production and erosion control are covered by most integrated approaches. However, other services like pest control and pollination as well as cultural services other than recreation are rarely included. These are assumed to be correlated to biodiversity, and could be addressed in models through a biodiversity indicator.

Meta-models like MIMES or InVEST and the vulnerability tool of ATEAM are promising approaches. They are accessible and user-friendly tools that provide estimates for a wide range of ecosystem services. They incorporate many feedbacks between sectors, including feedback from ecosystem services to socio-economic developments, but like all other models they rely on the same limited knowledge about ecosystem service supply in different natural, semi-natural and human-managed systems, and on process-based models to provide the basic physical relationships.

Alternative biodiversity indicators

An important point is the choice of appropriate indicators, which must be scientifically sound and also easy to understand in terms of relevance for impacts and responsive actions. Creating alternative biodiversity indicators based on existing model chains would enhance flexibility. There is a perceived limitation that a choice for a given model chain automatically means that one and only one (biodiversity) indicator can be used to express the modelling results. Providing a choice of indicators based on the same, existing model chains may remove this misconception.

It is important to keep in mind that even though biodiversity might be a suitable approximation for some supporting and regulating services like pollination and pest control there is no simple, linear relationship between ecosystem services and biodiversity, let alone the complex interplay of different services. Therefore, biodiversity impacts cannot generally be reliably used to estimate economic losses of reduced capacity to provide ecosystems goods and services. Although this area is full of conceptual and empirical difficulties as well as differences in viewpoint, there may be virtue in experimenting with a larger variety of indicators than just cost or GDP effect– for example, by incorporating risk assessment.

Marine models

Available ocean models show a good record in terms of ecosystem goods and services provisioning in close relation with biodiversity impacts, however, they are typically not well connected to broader, interlinked socio-economic and physical assessments and models for terrestrial systems. So improved links with more integrated approaches would offer important additional value. Especially important is the trade-off between food production from different marine and terrestrial sources (fish from catches and aquaculture versus arable crops versus livestock products) and the direct link to river and ocean nutrient loads. Some work is underway on this.

Other pressures on ecosystem services: Invasive species

None of the models cover biodiversity risks, and likely associated losses of ecosystem services, from invasive species with the exception of climate change induced biome changes. The main reason being that most observed invasive species related incidents are very specific for sectors, regions, species, invasion pathways and supporting vectors. This makes them hard to trace in more generic process-based models, and unsuited for forward looking assessments. Probabilistic methods, instead of firm causal relationships, might provide some guidance. This approach may, for example, capture the higher likelihood of transferring species to new environments from enhanced levels of trade and travel. Another starting point for modelling is the higher probability of establishment of introduced species in areas with reduced biodiversity.

Assessments require combinations of multiple tools

Although we reviewed a large number of different models, for a global assessment of biodiversity and ecosystem services the choice of models is much more limited than it might seem. There is no single model that covers the whole range from socio-economic developments, policy inputs, environmental and land use change, and biodiversity and ecosystem services for terrestrial and aquatic systems together. Therefore multi-model combinations are needed to generate comprehensive and internally consistent results. Preferably, the combination will include economic as well as biophysical modelling of water and plant growth and natural as well as agricultural systems. Obviously, these separate models have to be properly linked, and land-use is the most obvious linkage.

For assessments aiming at a global coverage it is convenient to use an integrated assessment model (IAM) framework, because these already contain well calibrated, hard-linked variables across a substantial range of relevant sectors. Besides they have a good track record in making valuable contributions in the vast majority of all recent comprehensive global assessments. However, even such large IAM models are currently insufficient to cover it all, and will need to be complemented further by additional components, such as linked marine models.

Teams rather than models

The appropriate unit to evaluate the sort of tools discussed in this study is a team, e.g. a group of model developers, – not a model. After all, the models reviewed here are most effective when used as combinations - combinations of models, of models with scenarios, and of

models, scenarios and other tools in the specific analytical setting of a specific assessment. Moreover, making forward looking assessments is not a science but a craft, with an important role for creative interpretation. All this points to the fact that the analytical team - or consortium of teams - is the locus of reproducible analysis. In other words, presenting models, scenarios and such as independently transferable units of knowledge is not realistic. However, these attempts at more objective evaluation of the models can only go so far. In the end, the track-record of the teams involved and their availability to contribute to new assessments on relative short notice are just as decisive, if not more, than the model features.

Scenarios: Construct new ones or use of existing scenarios?

Which scenario-approach (trends with policy options, explorative or normative) is most useful will depend on the specific questions and time and resources available. These factors will also determine whether the inclusion of more detailed sectoral or region-specific models is needed. Therefore, it is not useful to pre-empt a preference for certain scenario types without specific knowledge of its intended purpose and which options are to be compared. However, for the analysis of likely effects of specific policies the use of a baseline scenario with different well-specified policy options is generally the most suitable approach. Biodiversity and ecosystem assessments typically require the inclusion of slow cumulative changes and system inertia. Thus, biodiversity and ecosystem service assessments may well need to have an impact window that stretches further out in time than the policy window, in order to give a fair comparison of the impact of policy options. Therefore, a 'good' scenario for biodiversity and ecosystem some decades beyond the formal end date of the exercise.

Scale matters

While the key mechanisms and processes behind ecosystem service provision (water, carbon and nutrient balances, plant growth) and modelling thereof are the same at each scale, differences in the spatial resolution of the model determine the amount of detail that can be captured. Global models cannot practically include the small-scale heterogeneity of a landscape (e.g. presence of buffer strips and hedgerows) that is needed to be able to draw conclusions on pollination and pest-control effects. Socio-economic processes take place at a much larger spatial and temporal scale than the small scale of fields and watersheds that are relevant for ecosystem services, and the linkage of biophysical models with socio-economic models needs to consider feedbacks between both systems. The incorporation of feedbacks biophysical processes/ecosystem service provision and socio-economic between developments is an important step towards better forecasts of future developments not only related to effect of ecosystem service loss. Land cover and land use - in both quantitative and qualitative terms - form important intermediate parameters that do not only provide a linkage between socio-economic and biophysical processes but also direct links to ecosystem services. The detailed modelling of land use including agro-ecosystems, agroforestry and tree plantations with different management practices is a challenge for modellers but is necessary to improve the precision of estimates of ecosystem services as well as biodiversity. Making modern classifications (that build on the notion that human and natural systems are part of a fine-mesh mosaic of mostly cultural landscape) suitable for prospective modelling would help to make modelling results meaningful, especially in a European context.

Global or region-specific modelling?

Results from global models cannot be downscaled to regions or ecosystems that are in the same order of magnitude than the models' resolution. In recent assessments, the land-use

components of IAMs are typically addressed at 0.5x0.5 degrees grid-cells, approximately 50x50 km around the equator.

Advantages of regional models

Next to covering a finer resolution of the landscape, regional models have the advantage that they can account for relevant aspects of global economics and policies, and developments like climate change while they also relate to local processes and conditions (e.g. example different drivers that may be important for some regions but not for others). For example, agriculture expansion is the main cause of biodiversity loss in Brazil while in many parts of Europe it is urban sprawl. In addition, in some cases, region-specific models are more trusted by parties in the region. Nested models can be useful; and standard regional classifications would make nesting easier.

There is little difference between global and regional models in the approaches used but in the level of detail provided. Local (place-based) assessments have the advantage of incorporating small-scale heterogeneity that cannot be properly capture by coarse-resolution global models, however they require more detailed input data. Ideally therefore both approaches should to be combined when looking at large-scale and small-scale effects of policy decisions. An important factor determining their potential for disaggregating results from global to national or regional level, however, is that models should be spatially explicit, or should at least incorporate a link to land use. The most important difference is that models with a smaller geographic coverage offer the possibility to include much more meaningful management and policy options. Sufficient detail is not available at the global scale and effects of options and policies can only be estimated by crude proxies and general parameter estimates.

Ideal approach: combine different model and compare several approaches

Comparing the results of these different approaches would give an indication about the gaps and uncertainties in the underlying mechanisms and consistent results between the different models would provide a greater confidence in the results. The choice of which models to use and to link does not only depend on the quality of each separate model but also on the interactions between the different model components. Another important factor are the teams of people behind the different models and the cooperation between the different teams to combine the different model to create a meaningful, congruent assessment.

But it is not only the combination of different approaches that might help to overcome limitations of individual models. It would be very useful as well to compare several different model-combinations such as one 'traditional' integrated assessment model linked with several sectoral models, currently developing tools like MIMES and/or InVEST.

Impact of actions in the EU and elsewhere

One immediate advantage of tools with worldwide coverage is that they support discussion of EU actions (or non-action) in a worldwide framework. This is not to say that these models and scenarios automatically show causality between EU-based actions and biodiversity changes outside the EU.

Linkage to economic sectors and countries

Although most models and model/scenario combinations include causal linkages between activities in society and impacts on biodiversity and several ecosystem services, the effects cannot easily be expressed in meaningful terms for economic sectors, countries or target groups of policy. It is our impression that such a coupling – in a way that is flexible enough to

support analysis of alternative policies - will remain problematic for biodiversity issues, because they typically are downstream in a complex web of relations.

Including feedbacks will remain difficult and controversial, but some experimentation can be useful

To make clear what ecosystems and biodiversity deliver to society and to provide incentives for policy interventions, it is crucial to include feedbacks from changes in biodiversity and ecosystem services to socio-economic development (*i.e.* negative effects of reductions of ecosystem services on human well-being, if and where those can be identified). Today these feedbacks are rarely considered at all, which leads to model results that can estimate only partial costs but not the full benefits of management/policy options.

3 OVERVIEW OF RESULTS FROM MODELS FOR THE LOSS OF BIODIVERSITY AND ECOSYSTEMS AND THEIR SERVICES

3.1 Description of Task 2 from the ToR

The contractor should provide an assessment of the main findings from the models identified as part of Task 1. This should include:

- (1) an analysis of the impacts of current and future pressures on biodiversity and ecosystems and their services at the global level, and
- (2) the impact of policies to reduce such losses.

3.2 Introduction

3.2.1 Purpose of this chapter

As stated in the study's terms of reference, this chapter aims to provide an assessment of the main findings of the models described in Chapter 2 as used in the recent key global assessments listed in Section 1.1. In addition, given the international interest in the potential of Reducing Emissions from Deforestation and Degradation (REDD) financial incentive mechanisms, this report considers a number of papers that model the potential impact that these policies could have.

This review focuses on the biodiversity and ecosystem-related messages of the assessments. In particular it looks at what the assessments say about the future trends and pressures on biodiversity and ecosystem services, and the impacts of pursuing different policy options on these. It also summarises some of the assessments' conclusions with respect to progress towards global policy goals, in particular the Convention on Biological Diversity (CBD) target and Millennium Development Goals. It is intended that these results will provide TEEB with a clear description of what the assessments say about policy options to reduce pressures on biodiversity and ecosystem services.

Brief assessments are given here of some of the limitations of the assessments and their underlying models, but these issues and the sensitivity of the models to key assumptions are described in detail in the Chapter 4.

3.2.2 Description of the assessments used in the report

The assessments reviewed here use a range of scenarios (indicated in this report in italics) with different underlying policy approaches and assumptions. These can be loosely grouped together given the similar characteristics of some of the scenarios used in different assessments (see Table 3.1). The GBO-2, IAASTD and OECD Outlook all use a 'business as usual' baseline scenario with variations to examine the impact of specific policies. These are not included in this table but are referred to in the body of the report where appropriate. The scenarios in the International Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) (IPCC 2000) are a well-known set of scenarios and although they are not referred to in this report they are included in the table as a reference.

Table 3.1. The most important parameters of the scenarios and examples of different categories of scenarios used in the assessments. Adapted from Kok *et al.* (2008)

Parameters of scenarios	Categories of scenarios					
	Conventional markets	Reformed markets	Global sustainable development	Competition between regions	Regional sustainable development	'Business as usual'
Examples in the assessments	IPCCA1, GEO-4 Markets First	GEO-4 Policy First, MA Global Orchestration, Policy cases in the OECD and IAASTD	IPCC B1, GEO-4 Sustainability First, MA Techno Garden	IPCCA2, GEO-4 Security First, MA Order from Strength	IPCC B2, MA Adapting Mosaic	OECD baseline scenario, IAASTD reference scenario and GBO-2 baseline scenario.
Economic development	Very rapid	Rapid	Slow to rapid (depending on the region)	Slow	From average to rapid	Average (globalisation)
Population growth	Low	Low	Low	High	Average	Average
Technological development	Rapid	Rapid	From average to rapid	Slow	From slow to rapid	Average
Primary goals	Economic growth	Different goals	Global sustainability	Security	Local sustainability	Not defined
Environmental protection	Reactive	Both reactive and proactive	Proactive	Reactive	Proactive	Both reactive and proactive
Trade	Globalisation	Globalisation	Globalisation	Trade barriers	Trade barriers	Weak globalisation
Policy and institutions	Policy creates open markets	Policy limits market failures	Strong global management	Strong national policy	Local management, local actors	Mixed

3.3 Methodology and structure of this chapter

This chapter builds on the results from Chapter 2. Each document listed in Table 2.4 of Chapter 2 was examined to identify the models which describe trends in biodiversity and ecosystem services. These models are listed in Appendix 2.1. Models were examined in more detail (Appendix 2.2) for which specific details of the impact on biodiversity and ecosystem services in relation to policy scenarios were available. The table provides projections under each scenario examined in the assessment and the pressures and drivers influencing those projections.

All of the reviewed assessments consider the likely trends in key drivers of biodiversity and ecosystem change, and therefore these are briefly reviewed first. The main part of this report then considers the results of the assessments with respect to terrestrial, marine and then freshwater biodiversity. These are reviewed in separate sections as they tend to be examined in different models. In each of these sections relevant assessments' results are discussed in relation to progress with the achievement of global policy goals (i.e. the CBD target and

MDGs), the main pressures on biodiversity, the impacts of policy interventions and finally the limitations of the assessments.

3.4 Drivers of changes in biodiversity and ecosystems

According to the Millennium Ecosystem Assessment (2003) a driver is: 'any natural or human induced factor that directly or indirectly causes a change in an ecosystem'. In this review we follow the well known Driver-Pressure-State-Impact-Response, and refer to direct drivers as pressures. Such pressures are most commonly biological or physical in nature and include land use change, climate change and nitrogen deposition. The effects that pressures have on ecosystems can be more easily identified and measured (with differing degrees of accuracy) than drivers (indirect drivers in the MA terminology), which are most often the underlying cause of changes to ecosystems, acting on the direct drivers such as those stated above.

There are many important drivers of ecosystems which include population rise, economic growth, energy use, agricultural production and consumption as well as socio-economic change in marine and coastal ecosystems. The overall projected trends of a number of the important drivers according to some of the assessments are shown in Figure 3.1. Drivers can usefully be grouped into broader headings including: demographic drivers, economic drivers (such as consumption, production and globalisation), socio-political drivers and cultural and religious drivers (Nelson *et al.* 2006). In terms of demographic drivers, population projections for the year 2050 vary amongst the assessments studied from just under eight billion (GEO-4 *Sustainability First*) to nine and a half billion people (MA *Order from Strength* scenario).

Economic drivers are projected to play an increasing role in terms of their effect on ecosystems. Global economic activity increased nearly sevenfold between 1950 and 2000 and is expected to grow again by a further three- to sixfold as measured by gross domestic product (GDP) by 2050 (MA, 2005b). Global economic growth is projected under all scenarios up to the year 2050. The largest overall rise in GDP is projected under scenarios where maximising economic growth comprises a large part, or all of the primary goals (e.g. GEO4 Markets First and *Policy First* scenarios). Across all of the assessments, including baseline projections, energy use is expected to increase. Highest energy usage is projected under scenarios following a conventional markets approach (GEO4 Markets First, MA Global Orchestration) which see significant increases in global trade. Energy usage under these scenarios is projected to increase to over 1000 EJ (Exajoule or 10¹⁸ Joules) in 2050 (from a baseline of 400 EJ in the year 2000). In comparison, other scenarios project that energy use will increase to approximately 500 EJ (in sustainability focussed futures) to 800 EJ (e.g. GEO4 Security First, MA Order from Strength) by 2050. In terms of agricultural production and consumption, the baseline scenario projected under the OECD assessment sees global consumption increase 50 per cent by 2030 with a corresponding increase in production. The IAASTD projects that by 2050, agricultural land worldwide will have increased by ten per cent.

In terms of policy actions affecting indirect drivers on ecosystems, national and regional decision makers have more control than local decision makers through their influence over macroeconomic policy, technology development, property rights, trade barriers, prices and markets (MA, 2003). The indirect impacts that drivers exert on terrestrial, marine and freshwater ecosystems are explored further in Sections 3.5-7 below, in terms of the progress in achieving policy goals, pressures and policy interventions.

Figure 3.1 Projected trends in some key drivers of biodiversity and ecosystem change according to four recent global assessments. Source: Kok *et al.* (2008).

3.5 Terrestrial biodiversity

3.5.1 Progress on achieving goals

Goals and indicators

The assessment of biodiversity trends on a global scale presents significant challenges as it needs to cover a wide variety of features. Biodiversity as defined by the CBD encompasses the overall diversity found in the natural world and includes the variation in genes, species, populations and ecosystems. A range of indicators have been developed to attempt to describe biodiversity (see Table 3.2). Given the complexity of biodiversity, it is best described by a set of indicators rather than any one individual indicator.

In 1992, the CBD adopted the target 'to achieve by 2010 a significant reduction of the current rate of biodiversity loss at the global, regional and national level as a contribution to poverty alleviation and to the benefit of all life on Earth'. Subsequently, the Millennium Development Goals adopted the target to reduce biodiversity loss, achieving a significant reduction in the rate of loss by 2010. In 2001 the European Union agreed a more ambitious target of halting biodiversity loss by 2010⁵.

With respect to protected areas, a target was agreed during the third World Parks Congress (1982), to protect 10 per cent of the land area of all types of ecosystems.

The CBD has therefore established a work programme to identify a suitable set of indicators that can be used to assess progress towards the conservation of biodiversity and the attainment of the CBD biodiversity target. In 2004, the Conference of the Parties (COP) agreed on a provisional list of global headline indicators, to assess progress at the global level towards the 2010 target (decision VII/30), and to effectively communicate trends in biodiversity related to the three objectives of the Convention (Table 3.2). Subsequently decision VIII/15 of the 2006 COP distinguished between indicators considered ready for immediate testing and use and indicators confirmed as requiring more work.

Most of the indicators identified in the CBD process relate to pressures on biodiversity or responses to these and biodiversity loss rather than the actual status of biodiversity. Of the status indicators listed in Table 3.2, only trends in ecosystems and biomes are provided as outputs from the projections in the assessments covered in this review. None of the assessments are able to provide projections for threatened species etc.

Instead, all of the assessments, with the exception of the MA, use the Mean Species Abundance (MSA) metric as an indicator of the likely impacts of land use change and other pressures on biodiversity. The MSA metric was specifically developed as part of the GLOBIO3 model (by the Netherlands Environment Assessment Agency) to estimate future changes in terrestrial biodiversity, and is the only context in which the indicator is used (see Alkemade *et al*, 2009). With reference to Table 3.2, the first two "status and trends" indicators ("trends in extent of selected biomes, ecosystems and habitats" and "trends in abundance and distribution of selected species") are approximated with the MSA. Chapter 4 contains a more extended discussion of the MSA.

⁵ <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52006DC0216:EN:NOT</u>

Table 3.2. Provisional indicators for assessing progress towards the 2010 biodiversity target

Source: CBD website, http://www.cbd.int/2010-target/framework/indicators.shtml

Indicators considered ready for immediate testing and use (green), indicators confirmed as requiring more work are in red text and placed in parentheses.

Focal area	Indicator
Status and trends of the components	Trends in extent of selected biomes, ecosystems, and habitats
of biological diversity	Trends in abundance and distribution of selected species
	Coverage of protected areas
	Change in status of threatened species
	Trends in genetic diversity of domesticated animals, cultivated plants, and fish species of major socioeconomic importance
Sustainable use	Area of forest, agricultural and aquaculture ecosystems under sustainable management
	(Proportion of products derived from sustainable sources)
	(Ecological footprint and related concepts)
Threats to biodiversity	Nitrogen deposition
	Trends in invasive alien species
Ecosystem integrity and ecosystem	Marine Trophic Index
goods and services	Water quality of freshwater ecosystems
	(Trophic integrity of other ecosystems)
	Connectivity / fragmentation of ecosystems
	(Incidence of human-induced ecosystem failure)
	(Health and well-being of communities who depend directly on local ecosystem goods and services)
	(Biodiversity for food and medicine)
Status of traditional knowledge, innovations and Practices	Status and trends of linguistic diversity and numbers of speakers of indigenous languages
	(Other indicator of the status of indigenous and traditional knowledge)
Status of access and benefit-sharing	(Indicator of access and benefit-sharing)
Status of resource transfers	Official development assistance provided in support of the Convention
	(Indicator of technology transfer)

There are significant limitations of the MSA with respect to its appropriate use and what can be deduced from changes in its value. For example, MSA represents the average response of a selection of species belonging to an ecosystem and does not look at individual species responses. Therefore, an MSA of 50 per cent could mean that half the original species have gone extinct, or that all species are at half the original abundance, a major difference requiring different policy responses; therefore MSA does not capture extinctions. Nor is the MSA able to give weightings in terms of the importance of species (for example, giving higher importance to globally threatened species). Further, the MSA does not take into account the different levels of diversity in the intact habitats (such as intact habitats in Greenland and the Amazon have the same MSA value). The aggregation of average responses across species and ecosystems may also mask differences among regions or biomes. Projections of MSA changes therefore need to be carefully interpreted in terms of their biodiversity impacts. A more detailed discussion of the use of the MSA as a biodiversity indicator and its limitations is provided in Chapter 4.

Progress to date

According to the GEO-4 and OECD assessments approximately 73 per cent of the original global terrestrial biodiversity (as measured by MSA) remained in the year 2000. The largest declines have occurred in temperate and tropical grasslands and forests with the global annual rate of loss dramatically higher than previous centuries, particularly in Europe (see Figures 3.2 and 3.3 on the distribution of the world's biomes and the estimated global losses in biodiversity per biome). A very similar result was obtained in the GBO-2 (2006) assessment, using the same technique but with a less complete dataset (M. van Oorschot, pers. comm.). It estimated that 70 per cent of biodiversity remained in 2000. However, for the purpose of modelling policy scenarios, it is the relative differences between the scenarios that are more important than the absolute final figure for biodiversity.

All assessments are unanimous that the CBD target to significantly reduce the rate of biodiversity loss by 2010 will not be met by 2010 or in the long-term. In Europe, biodiversity will likely decline at a slower rate between now and 2050 but will not be halted. Under the baseline scenarios in the OECD and IAASTD, MSA is forecast to fall another 11 per cent to 62 per cent and by 7.5 per cent in the GBO-2 to 62.5 per cent by 2050. The GBO-2 projects a decrease of MSA to about 62.5 per cent under a business-as-usual scenario.

The MA estimates that 13.5 to 18 per cent of global vascular plant species will potentially be lost at ecological equilibrium as a result of altered habitat, climate change and nitrogen deposition between 1970 and 2050 (MA 2005d). The losses are least under the *TechnoGarden scenario* although the differences between the scenarios are relatively small as the 50 year modelling window may be too short for the various climate change scenarios to reveal their expected differences in long-term impacts.

The assessments differ to the extent to which biodiversity is expected to decline depending on different assumptions about agricultural methods, policies regarding biofuels and conservation efforts (see below). Some of these look at the potential biodiversity benefits of protected area designations. Projections from the GBO-2 assessment, suggest that even the most stringent conservation policy of protecting 20 per cent of every biome, results in only a marginal improvement in the MSA indicator to 63.5 per cent (a 1 per cent improvement on the baseline). However, it should be noted that several studies have suggested that a large proportion of the world's taxa could be secured by the protection of relatively small areas if directed to the most biodiversity rich areas, such as the biodiversity hotspots⁶ identified by Conservation International (e.g. Myers *et al.* 2000, 2003). Therefore the results of the model assessments should be treated with caution as they may reflect weaknesses in the models or, more likely, the MSA metric as an indicator of biodiversity change.

A further concern is that the policy assumption of conserving 20 per cent of every biome within protected areas may be unrealistic. By 2003, the World Parks Congress goal of

6

http://www.conservation.org/explore/priority_areas/hotspots/hotspots_revisited/key_findings/Pages/key_findings.aspx

achieving 10 per cent protection of the land area had been attained in nine of fourteen ecosystems. Overall a recent assessment (Coad *et al.* 2009) found that global terrestrial protected area coverage reaches 12.2 per cent. However, insufficient areas of lakes, coniferous forests and grasslands have been protected meaning that the 10 per cent goal cannot be considered to be fully achieved (Kok *et al.* 2008) and it has not been achieved for all ecosystems in all regions.

3.5.2 Pressures

The global loss of terrestrial biodiversity thus far has predominately resulted from habitat loss through conversion to agricultural land, which remains the case today (Braat and ten Brink 2008, p54). However, assuming significant advances in agricultural productivity continue into the future, the majority of the assessments expect that the major influences on biodiversity in the next century are likely to be infrastructure and climate change given current policies and trends (see Figure 3.4). Infrastructure is expected to account for approximately five per cent, followed by climate change at three per cent and then crop area at two per cent. However, agriculture is likely to be much more important in developing nations, where larger increases in population are expected, than in developed countries. This conclusion, however, differs from the MA, which predicts agriculture will remain the predominant pressure to 2050 (see Figure 3.5).

Figure 3.2. Geography of the world's major biomes, as used in the IMAGE and GLOBIO framework

Source: Bakkes & Bosch (2008)

Figure 3.3. Global biodiversity from 1700 to 2050, OECD baseline.

OECD Environmental Outlook modelling suite, final output from IMAGE cluster Source: Bakkes & Bosch (2008)

Date: 20-jun-2007

Figure 3.4. Contribution of different pressures to the global biodiversity loss between 2000 and 2050 in the OECD baseline.

Source: Bakkes & Bosch (2008).

Figure 3.5. Comparison of effects of agriculture expansion, climate change and nitrogen deposition between 1970 and 2050 under four scenarios for different biomes and the World. Source: MA (2005d)

Agricultural expansion and intensification

All assessments predict an expansion of cropland and pasture land in response to increasing demand as a result of growing populations and further economic growth. The OECD predicts that by 2030 agriculture will have to produce 50 per cent more food to feed a population that is 27 per cent larger and 83 per cent wealthier. In addition there is agreement that developing countries will see far greater expansion than developed countries. The OECD expects land use to grow four times faster in developing countries due to faster population growth and the

availability of land. The IAASTD projects a global increase of 10 per cent in agricultural land, provided significant improvements in food productivity are achieved. Sub-Saharan Africa is likely to have the largest increases with yearly expansion of 0.6 per cent, or 30 per cent by 2050. Latin America sees similar increases (Figure 3.6). The GEO-4 and MA similarly predict the biggest expansions in Africa highlighting the importance of ensuring yield improvements to reduce agricultural land expansion.

Expansion of agricultural land has significant implications for biodiversity as native habitat is converted to agriculture with consequent local extinctions of populations and species. The assessments all predict the largest biodiversity losses in Sub-Saharan Africa, where agricultural expansion is the predominant pressure. Population increase and economic growth remain important drivers in all scenarios.

Figure 3.6 Causes of changes in agricultural production between 2000 and 2050 according to the IAASTD.

Calculations by IFPRI with the IMPACT model following the baseline scenario of the Agriculture Assessment. Source: Kok *et al.* (2008). Data from IAASTD (2008)

There are some significant differences between the assessments, regions and scenarios. The MA projects that, despite initial slow yield improvements, the lower population increases and locally successful developments in crop improvement under the *Adapting Mosaic* scenario would have benefits in Sub-Saharan Africa. This results in the lowest deforestation rates in the region under the MA scenarios. However a similar policy in South Asia, with corresponding low yields would lead to a virtual depletion of forests by 2100.

The most damaging outcome for forest cover occurs under the *Order from Strength* scenario, where large increases in population, coupled with poor technological innovation and the inability to import food (particularly in Sub-Saharan Africa) lead to rapid expansion of agriculture at the expense of forest. Asia and Latin America also experience high deforestation rates of 40 per cent and 25 per cent respectively. This is different to a similar scenario in the GEO-4 assessment, *Security First*, in which agricultural expansion is lowest

and forest cover remains high due to lower economic growth maintaining a low demand for food and resources.

The assessments differ in their projections of the expansion of agricultural land. The GEO-4 projects the greatest expansion of land in the *Policy First* and *Sustainability First* scenarios due to concerns about food availability and strong targets for combating climate changes resulting in a rapid expansion of biofuels. This would result in a substantial loss of forest in Africa, Latin America and the Caribbean with almost all of Africa's forests lost under the *Policy First* scenario. The MA scenario *TechnoGarden*, despite describing a similar set of policy options as *Sustainability First*, projects the least amount of additional land conversion to agriculture, despite the increase in land for biofuels. This option projects by far the lowest forest loss overall amongst the MA scenarios but still significant losses of forest in Africa and Southeast Asia.

Climate change impacts

Climate change will have an increasingly significant impact on biodiversity over the coming century, with IPCC scenarios projecting temperature increases from 2000 to 2050 of between 1.7°C to 2.2°C (IPCC, 2007). In the GEO-4, biodiversity loss from climate change is the most consistent impact across all the scenarios and all the regions, accounting for approximately four per cent loss of MSA in every case. This is approximately twice as much as estimates of biodiversity loss that had already occurred due to climate change by 2000. The OECD baseline projects a slightly lower predicted loss of three per cent.

The MA is more detailed in its approach describing the impacts of climate change on each biome. The most impacted biomes, in terms of vegetation loss, include cool conifer forests, tundra, shrubland, savannah and boreal forest. Even under the best case scenario, *TechnoGarden*, climate change will have a significant impact. Protected areas do not necessarily provide species with respite; in the worst case scenario, a continued liberalised market scenario, *Global Orchestration*, will lead to the greatest losses of approximately 20 per cent in protected areas by 2050 (see Figure 3.5).

While the impacts of climate change are modelled as being similar in each GEO-4 scenario, in reality the impact will depend on the ability of the species and ecosystems to adapt and move in response to changes in climatic conditions (IUCN, 2004; IPCC, 2007). Resilient, well connected ecosystems are more likely to suffer fewer ill-effects than fragmented, over-exploited ecosystems such as those under the *Security First* and *Markets First* scenarios.

Air pollution and nitrogen deposition

Atmospheric deposition of sulphur and nitrogen can lead to substantial changes of ecosystems through the acidification and the accumulation of excessive nitrogen. Nitrogen is a limiting nutrient of the growth of many plants and its addition to an ecosystem often leads to eutrophication, which results in changes in species composition, structure and processes. The MA (2005d), using a species-area relationship (SAR) model, identifies atmospheric deposition of nitrogen as a significant driver of species loss in temperate forests, warm mixed forests (particularly Asia) and to a lesser extent in savannah (see Figure 3.5). This is based on a combination of the habitat's sensitivity to nitrogen and its exposure to high nitrogen loads. In contrast the assessments using MSA show nitrogen deposition to be a relatively unimportant pressure on biodiversity (Figure 3.4) on a global scale. Indeed particular

scenarios (*Sustainability First* and policy scenarios in the OECD) project reduced impacts from nitrogen deposition in the future, particularly in developed countries.

Part of the large difference between the models could be due to the fact that SAR considers only natural areas, giving more weight to species diverse ecosystems, while MSA gives equal value to all ecosystems and includes areas of low diversity such as agricultural land. Nitrogen deposition is likely to have less impact on these areas that are already low in diversity and often already artificially enriched. Thus on a global scale, the impact in MSA appears small, but it is likely to still be an important factor in natural areas.

Infrastructure

Infrastructure (plus related settlement) is considered the most important driver of biodiversity loss under the MSA based analysis but is not specifically referred to in the MA. Its impact, however, varies considerably across the scenarios. Globally in the GEO-4, it accounts for seven per cent and five per cent MSA loss in the *Markets First* and *Security First* scenarios but contributes only one per cent loss in the other scenarios. This trend is repeated throughout the regions. While population growth is lower in *Markets First* and road construction and urban development are more regulated than in *Security First*, international markets for goods are strengthened and infrastructure is developed to promote access to natural resources.

3.5.3 Impact of policy interventions

Creation of an extensive network of protected areas

The GEO-4 and GBO-2 assessments investigate the potential impacts of effective conservation of 20 per cent each of the world's terrestrial ecosystems as a conservation intervention. In their projections the creation of an ecologically representative system of protected areas does not limit the overall amount of natural habitat converted to agricultural use, but might protect some of the most endangered species. But the use of protected areas results in so much demand for agricultural farmland that remaining habitats outside protected areas are crowded out, and the areas themselves become isolated in an agricultural matrix. This is particularly evident in the projections for Meso-America and Southern Africa. This suggests that sustainable agricultural practices that pay explicit attention to wildlife conservation would be particularly important under these circumstances (UNEP, 2007, p425).

Intensification and improvement of agriculture

The extent to which agricultural land expands depends on the degree of improved productivity, i.e. food output per hectare. The question as to whether agriculture will continue to intensify or will continue to require substantial increases in land is crucial to the issue of biodiversity. The GEO-4, IAASTD and OECD Outlook all look into the boosting of agriculture as a means to increase food production without increasing the area of land required. There are substantial differences between the assessments with respect to the projected growth in agricultural production per hectare. The IAASTD predicts that high investment in agricultural development will lead to substantial increases in yield of up to 300 per cent in Sub-Saharan Africa and 200 per cent in Latin America. Crucially while the IAASTD recognises the importance of technological innovation, it maintains that good governance and effective technology transfer will be vital to ensure yields improve.

The IAASTD suggests that poor agricultural practices associated with unfavourable socioeconomic conditions can create a vicious cycle in which poor smallholder farmers are forced to use marginal lands, thus increasing deforestation and overall degradation. Loss of soil fertility, soil erosion and breakdown in agro-ecological functions can result in poor crop

yields, land abandonment, deforestation and ever-increasing movements into marginal land, including steep hillsides. Existing multifunctional systems that minimise these problems have not been sufficiently prioritised for research. There is little recognition of the ecosystem functions that mitigate the environmental impacts.

There are different views about how to best increase productivity and thus reduce the amount of land required. The OECD is confident of the benefits of the liberalisation of agricultural trade while the IAASTD contends that increasing trade will likely benefit the larger-scale farmers at the expense of smaller-scale farmers. It suggests that stagnating public finances are an issue and money would be well spent in investments in technology and knowledge to improve agricultural activity.

Liberalisation of trade

The OECD is relatively positive about the impacts of liberalised trade on sustainable development as it will stimulate the more efficient use of resources and connect more regions to world markets. However, its impact on global biodiversity is likely to be unfavourable. The results of the GBO-2 assessment suggest that liberalised markets would shift agricultural production to Southern Africa and Latin America driven by low labour costs and land costs at the expense of grasslands and forests (sCBD and MNP, 2007, p29). This shift could remove production from inherently more productive areas of North America, OECD countries in Europe, Canada and Japan and thus require more land overall. This shift could potentially increase biodiversity in these countries as baseline agricultural land is no longer required for agricultural production, with possible benefits to these developed nations. However, the authors of this report would question whether this land would necessarily be managed for biodiversity given other competing demands for land. Furthermore, abandonment of agricultural land would be detrimental in some parts of the world. For example, in parts of Europe many extensively managed semi-natural habitats are of high natural value (Baldock et al. 1993) and such marginally profitable farming systems could be at particular risk (Anon, 2005).

Under the *Markets First* scenario, which liberalises markets more than the baseline, GEO-4 similarly predicts greater losses in biodiversity than other options. Strengthened markets for goods drive infrastructure development to increase access to natural resources as wealth creation is valued more than conservation (UNEP, 2007, p423).

Under the GBO-2 scenarios, poverty alleviation measures in Sub-Saharan Africa through increased investment in combination with trade liberalisation of agriculture, similar to proposals in the Millennium Program, presents a particular dilemma for the Millennium Development Goals. On the one hand, assuming the effective implementation of these investments, this option leads to a 25 per cent GDP increase in Sub-Saharan Africa on top of the baseline scenario for 2030. However, this is the most damaging option for biodiversity of all assessed by the GBO-2, leading to 5.7 per cent loss in MSA in addition to the baseline in Sub-Saharan Africa as increased demand for food leads to rapid expansion of agricultural land at the expense of savannah, tropical forests and grasslands. This is likely to be an underestimate as the study did not assess the consequences of additional infrastructure, which will be required for an effective hunger alleviation and poverty program (ten Brink *et al.* 2007, p 8).

Impacts of climate change policies

According to all the assessments projections, effectively mitigating climate change does reduce climate change impacts on biodiversity, but this positive effect is offset by increased land-use for bio-energy production. The balance is not expected to be beneficial for biodiversity. It follows that only by combining climate change mitigation with increased land-use efficiency (i.e. compact agriculture) can the negative effects on biodiversity be counterbalanced. This was found to be the case across the assessments.

Under the *Sustainability First* scenario demand for cropland and pasture would increase from around 50 million km² to over 60 million km² (a 20 per cent increase) by 2050; second only in demand for land to the *Security First* scenario. Increases in technological developments are counterbalanced by greater concerns for food availability and the need to produce biofuels to counter climate change. This demand is also reflected in the changes in forest cover. Latin America and Africa would be expected to see significant declines in forest land in all scenarios as demand increases for food and biofuels. However, Europe and North America would see small increases (GEO-4).

An ambitious climate change mitigation package is assessed in the OECD Outlook analysis that is specifically designed to stabilise the atmospheric concentration of carbon dioxide equivalents at 450 ppm by 2100. This target can only be attained if deforestation is slowed down, as deforestation results in large carbon emissions. Therefore, land-use changes for bioenergy production and other increases of agricultural production have to be accommodated within the present total agricultural area ('compact agriculture'). This requires a strong increase in agricultural productivity (Bakkes and Bosche, 2008, p112).

Reducing deforestation and forest degradation through carbon pricing mechanisms

Several models of deforestation exists, most of these have so far investigated the drivers of deforestation (e.g. Laurance *et al*, 2001; Soares-Filho *et al*, 2006), but have so far not addressed the responses to deforestation. The IIASA models presented below are an example of a spatially explicit model attempting to address responses to deforestation. Other recent studies that have investigated responses include Butler *et al* (2009) and Venter *et al* (2009). These studies explore the opportunity costs of avoiding deforestation, but these are not equivalent to the real costs which need to investigate the effectiveness of the suggested interventions and the opportunity costs.

Since it was proposed by the delegations from Papua New Guinea and Costa Rica in 2005, the payment for the reduction of emissions from deforestation and forest degradation (REDD) has been much discussed as a potentially cost-effective way to achieve global carbon savings. While much of the debate currently is focussed around the carbon sequestration and storage potential of tropical forests, the by-product of these measures might be protection of biodiversity and ecosystem services that the forests provide (see Miles & Kapos, 2008).

None of the global assessments model the impacts of carbon pricing on deforestation rates. However, the literature on the topic is becoming more extensive. This section looks at specific model results from the IIASA family of models and is presented as an example of policy options available rather than a comprehensive review of the literature on REDD. The studies presented both look at the payments required to prevent deforestation, although focussing on different scales. Kindermann *et al.* (2006) used a spatially explicit biophysical and socio-economic land use model to investigate the impact of carbon price incentive schemes and payments on global deforestation. The model simulates land-use changes as a decision based

on the difference between net present value of income from production on agricultural land versus net present value of income from forest products. Using a baseline scenario, i.e. assuming a price on carbon of 0 US\$/tC, close to 200 million hectares (or 5 per cent of the forests in 2006) were projected to be lost between 2006 and 2025, resulting in the emission of 17.5GtC. The model distinguishes between a taxation system on the removal of biomass (which is paid once the harvested biomass has been detected) and an incentive payment contract to preserve standings of forest (which is renewed every five years based on the remaining standing biomass). To reduce deforestation by 50 per cent a taxation system would require 12 US\$/tC (assuming a mix of slash-and-burn and selling the biomass as wood products) costing 6 billion US\$ per year in 2005, reducing to 4.3 billion US\$ by 2100 due to decreasing deforestation speed. Incentives of 6 US\$/tC of vulnerable stands of biomass would also reduce deforestation by half, costing 34 billion US\$ per year.

A more recent study by Kindermann *et al.* (2008) examined three economic models of global land use (GCOMAP, DIMA and GTM) to examine the potential contribution of mechanisms for avoiding deforestation of tropical forests to reduce greenhouse gas emissions. The models use different assumptions on the extent of carbon stored in the world's tropical forests and the area that they cover, accounting for some of the differences between them. According to this analysis, a 50 per cent reduction in deforestation would cost between 9 and 21 US\$/tC and require 17 and 28 billion US\$ per year.

According to two of the three models, the cost of protecting forest in Africa appears to be significantly lower than the global average (see Table 3.3).

Table 3.3 Carbon price necessary in US\$ per tonne of CO₂ necessary to generate a 10

per cent and 50 p	per cent reduction in deforestation in 2030.			
	10% reduction, US\$	50% reduction, US\$		
A		CCOMAD DIMA CTM		

	10% reduction, US\$			50% reduction, US\$		
Area	GCOMAP	DIMA	GTM	GCOMAP	DIMA	GTM
Central and South America	3.98	8.03	1.48	19.86	24.48	9.7
Africa	1.04	3.5	1.63	5.2	12.3	9.6
Southeast Asia	8.42	8.73	1.24	38.15	19.56	8.31
Globe	3.5	4.62	1.41	16.9	20.57	9.27

It is important to note that the IIASA models only consider the cost of REDD based on the price of carbon on the global markets. They do not consider the additional costs of monitoring, reporting and implementation, including additional security and protection. These costs are likely to be very significant, and may incur similar costs to those required for the expansion of protected areas (for example, see James *et al.*, 2001). Therefore, any calculation of the costs of REDD schemes must consider the costs of implementation alongside the cost of carbon.

3.5.4 Gaps and limitations of the assessments

Invasive alien species

Invasive alien species were not considered in the models, and the assessments point out that its inclusion would likely increase biodiversity loss. As global trade increases, the number of intentional and unintentional introductions will increase in terrestrial, freshwater, and marine
biomes. Unless greater management steps are taken to prevent harmful introductions that accompany increased trade, invasive species will cause increased ecological changes and losses of ecosystem services in all scenarios. Because of differences among scenarios in economic growth and openness to foreign trade, invasive species increase most in Conventional and Reformed Markets scenarios, followed in order by Global Sustainable Development, Regional Sustainable Development and Competition Between Regions (see Table 2.4 and Appendices 1.5 and 2.3 for a descriptions of the scenarios).

Infrastructure and related settlement

Increased infrastructure pressures are modelled in the GLOBIO model by MSA by expanding the influence zone around current infrastructure rather than predicting future growth. Thus it does not take into consideration the possibility of new infrastructure developments. The impacts of infrastructure are not realistically represented within GLOBIO as expanding influence zones are not region specific and impact zones are different in different regions. In addition, the urban area in GLOBIO does not change, due to the lack of an adequate urbanisation model, thus potentially underestimating some additional negative impacts of land conversion.

3.6 Marine biodiversity

3.6.1 Progress in achieving policy goals

The 2002 World Summit on Sustainable Development agreed to maintain or restore fish stocks to maximum sustainable yields by 2015 where possible, with the aim of achieving these goals for depleted stocks on an urgent basis. The Summit, along with the CBD, also called for a representative network of marine protected areas (MPAs) of 10 per cent of marine habitats to be established by 2012. A year later the fifth IUCN World Parks Congress reiterated the goal with a further commitment to strictly protect at least 20-30 per cent of each marine habitat type closed to all forms of extractive use.

It is too early for the assessments reviewed in this study to meaningfully assess progress towards these goals, especially given the lag in available data. However, key trends are highlighted in a number of the assessments. The GEO-4 presents data on marine fish stocks that have been exploited for at least the past 50 years, which shows the dramatic increase in stocks that are fully exploited, over exploited or have crashed (Figure 3.7). Of the 1,400 stocks that were fished in 2000, almost 20 per cent (240) had crashed. Furthermore, the trophic level of fish captured for human consumption has been decreasing, indicating a decline in top predator fish catches (such as marlin, tuna) which are being replaced by fish such as mackerel and hake, high value invertebrates such as shrimp and squid and aquaculture products such as salmon and tuna.

Figure 3.7 Changes in degree of exploitation of stocks of marine fish species (source: Alder, Trondheim/UN conference on Ecosystems and people, October 29-November 2, 2007. Original source: Sea Around Us project, 2007: Cited in Braat & ten Brink, 2008)

Although the GEO4 accepts that the number and sizes of MPAs have been increasing, targets for MPAs will not be met within the targets under current trends (GEO4, 2007, p149). Marine ecosystems therefore remain greatly under-represented by protected areas. The OECD concurs that too few MPAs exist and points to evidence that suggests they do deliver benefits in terms of density, biomass, size of organisms and diversity (see Halpern, 2003). The MA suggests that MPAs provide striking examples of synergies between consumption and sustainable use as appropriately placed MPAs can significantly increase fishery harvests in adjoining areas (MA, 2005b, p11).

3.6.2 Pressures

Marine fish stocks show evidence of declines from a combination of unsustainable fishing pressures, habitat degradation, eutrophication from terrestrial activities, coastal conversion for aquaculture, invasive species and global climate change (UNEP, 2007, p145).

Wild capture fisheries

Overfishing emerges from the assessments as the dominant driver of change of the marine environment. Over much of the world the biomass of fish targeted in fisheries (including that of both the target fish and those caught incidentally) has been reduced by 90 per cent relative to levels prior to the onset of industrial fishing (MA, 2005b). Amongst others, the assessments point to advanced fishing technology which has contributed significantly to the depletion of marine fish stocks (UNEP, 2007, p28).

The MA, GEO-4, IAASTD and the *Ecosystem-based global fishing policy scenarios* assessments all include projections on commercial fisheries given their direct relevance to humans and the availability of data. The IAASTD and the *Ecosystem-based global fishing policy scenarios* used the EcoOcean model (see Box 3.1), whereas the GEO-4 and the MA used its predecessor EcoPath with EcoSim (Alder *et al.*, 2007). The MA selected three regions

- the Gulf of Thailand (shallow coastal shelf system), Benguela Current (coastal upwelling system), and the Central North Pacific (pelagic system) - for which good modelling tools existed to investigate how the diversity of fisheries and the biomass of species might change under the four MA scenarios. The other assessments take global approaches based on data from the Sea Around Us Project.

Box 3.1 The EcoOcean MODEL (Taken from Braat & ten Brink, 2008: adapted from Alder *et al*, 2007)

The EcoOcean model was developed to quantitatively assess the future of fisheries under different scenarios. It is based on a series of 19 marine ecosystem models representing the 19 Food and Agriculture Organization of the United Nations (FAO) areas of the world's oceans and seas. The models account for the biomass of each functional group, their diet composition, consumption per unit of biomass, natural and fishing mortality, accumulation of biomass, net migration, and other causes of mortality. The model is based on the principle that future biomass can be estimated from the current biomass plus change in biomass due to growth, recruitment, predation, fisheries and so on.

The model identifies 43 functional ecological groups that are common to the world's oceans which include all major groups in the oceans, but pays special attention on exploited fish species. The most important driver for the model simulations is fishing effort. Five major fleet categories (demersal, distant water fleet, baitfish tuna (purse seine), tuna long-line and small pelagic) are used to distinguish different fishing effort based on historical information. For current purposes, the oceans should be considered as spatially-separated production systems with distinct fishing fleet activity.

The aggregated global model produces results within 10 per cent of the reported total for any given year. This gave confidence that the models are providing plausible results for different scenarios. The development of EcoOcean also provided the opportunity to look at the future of marine biodiversity using a **depletion index** (*Box 5.2*) as a proxy for changes in species composition and abundance under the different scenarios. EcoOcean is however not a full representation of the world's oceans as it contains several sources of uncertainties (see section 5.4).

The projections from the analyses are unanimous that pressures on marine fish stocks will increase over the next 40 years. In the GEO-4, all four scenarios project an increase in fishing effort, and as a consequence landings increase significantly (see Appendix 2.2). The catch projections are lowest under the *Sustainability First* scenario due to a smaller population increase and changing diets leading to lower demand. In addition, under this scenario an effort is made to fish lower in the food chain resulting in a lower marine trophic index (MTI) of the catches (see Box 3.2 for information on the MTI and other marine biodiversity indicators). In combination these two factors result in a large increase in total biomass of large demersal fish and the smallest decrease of large pelagics of all the scenarios. The *Markets First* scenario projects the biggest increases in landings and the largest decreases in biomass of large pelagics and demersals, due to an increase in technology, population and a wealthier society.

Under the *Ecosystem-based global fishing policy scenarios* modelled landings were increased by augmenting the proportion of secondary demersal fish groups and the proportion of invertebrates. As a consequence, the MTI generally decreased in all oceans. The decline in MTI confirms that as demersal effort increased, landings increased, but usually at lower trophic levels. With the exception of the Mediterranean Sea and the Caribbean region, the biomass diversity index also decreased for the three main oceans. In the Mediterranean Sea and Caribbean region, the increase appears to be a result of the predation impact of a few top predators being lowered as their biomasses decrease, allowing for an increase in dominance of species of lower trophic levels (Alder *et al.* 2007, p25-27).

The MA shows quite different responses from the different case studies. Diversity of commercial fisheries showed large differences among scenarios until 2030, but all scenarios converge into a common value by 2050. Policy changes after 2030 generally included increasing the value of the fisheries by lowering costs, focusing on high-value species, substituting technology for ecosystem services, or a combination of the three approaches. However, no approach was optimal, since the approaches used in the scenarios reduced biomass diversity to a common level in each ecosystem (MA 2005d, p377).

In the Gulf of Thailand, both global strategies, *Techno Garden* and *Global Orchestration* fared well up to 2030 when policy shifted to rebuilding the ecosystem. Regional strategies fared worse, with *Adapting Mosaic* failing to respond to efforts to rebuild the stock after 2010 and *Order from Strength* showing steady declines of the biomass diversity index. However, all scenarios showed dramatic declines in biomass diversity index after 2030 when technology had improved and the policy shifted to providing fish meal for aquaculture which had taken over primary production of food (MA 2005d, p377). In the Central North Pacific and Benguella areas regional policies fare slightly better through well informed local strategies but are hampered by lack of co-ordination at the global level and all scenarios converge by 2050. All fisheries are projected to respond well to ecosystem approaches.

Box 3.2 Indicators of Marine Biodiversity (adapted from Alder et al. 2007)

• A **biomass diversity index** can be used to provide a synthesis on the number of species or functional groups that compose the biomass of the ecosystem. The biomass diversity index assumes that more stable ecosystems will tend to have a more even distribution of biomass across the functional groups and can therefore be used to evaluate model behaviour.

• The **marine trophic index** (**MTI**) is calculated as the average trophic level of the catch and is used to describe how the fishery and the ecosystem may interact as a result of modelled policy measures. The index is often used to evaluate the degree of "fishing down the food web" (Pauly *et al.*, 1998). The MTI is one of the core indicators being used by the Convention on Biological Diversity.

• The **depletion index** (DI) has been developed to provide a marine equivalent to the MSA, that is calculated as part of the overall assessment within EcoOcean. It attempts to evaluate the degree of depletion of fish species by accounting for differences in their intrinsic vulnerability to fishing. It was calculated from prior knowledge of the intrinsic vulnerability and the estimated changes in functional group biomasses. Intrinsic vulnerability to fishing of the 733 species of marine fishes with catch data available from the Sea Around Us Project database (www.seaaroundus.org) was included in the analysis.

Growth of aquaculture

The GEO4 assessment states that growth in aquaculture will help compensate for some of the shortfall in wild-caught fish but points out that much of the increase in aquaculture has been in high-value species that meet the needs of affluent societies and does little to meet the needs of developing countries (GEO4, 2007, p147).

The OECD baseline scenario projects that increased wealth and population will require much stronger increases in prices to limit fisheries growth to the FAO's projected 1.6 per cent given that global GDP in the Baseline is 2.8 per cent (OECD, 2008, p332). Given that the majority of capture fisheries are at or near maximum sustainable yields, it assumes no growth in

capture fisheries and an average growth of aquaculture of 3.9 per cent annually to 2030. This may have implications for fishmeal as between 2 to 12 kg of fishmeal is required to produce 1 kg of farmed fish (depending on the species). However, as the price increases it is assumed that alternative feeds, such as soya-based products, will be developed for those fish that can be fed on vegetarian diets (OECD, 2008, p333).

The trophic level of species used for fish meal in aquaculture is increasing, suggesting some fish species previously destined for human consumption are being diverted to fish meal, with potential negative implications for food security in other countries. Modelling from the MA (Gulf of Thailand area) suggests that gains from taking a global ecosystem management approach could be lost if improved technology and big increases in demand for aquaculture lead to increases in catches for fishmeal.

Modelling from the IAASTD suggests that although populations of small pelagic species are robust, the behaviour of the small pelagic fish towards the end of the modelled period (2048) indicate that policies of exploiting small pelagic fisheries to support a growing aquaculture industry may not be sustainable in the long-term except in a limited part of the world's oceans. Caution needs to be taken even with this interpretation since small pelagic fish are extremely sensitive to oceanographic changes and if the predictions for changes in sea temperature come about, the species dynamics within this group will change significantly. This could potentially have knock-on impacts up through higher trophic levels since most animals, especially marine mammals and seabirds, rely on this group of fish for much of their food. Therefore, a policy of increasing landings would need to be carefully considered in the light of climate change (IAASTD, 2008, p355).

3.6.3 Impact of policy interventions

To date, there have been some initiatives to rebuild depleted stocks, but recovery efforts are quite variable. A common and appropriate policy response is to take an ecosystem approach to fisheries management but many governments are still struggling to translate guidelines and policies into effective intervention actions. Other policy options have included eliminating perverse subsidies, establishing certification, improving monitoring, control and surveillance, reducing destructive fishing practices such as bottom trawling bans, expanding marine protected areas and changing fishing access agreements. There are also policy responses to reduce effort in industrial scale fishing in many areas, while also supporting small-scale fisheries through improved access to prices and market information and increasing awareness on appropriate fishing practices and post-harvest technologies.

Ecosystem-based management

All assessments show relative improvements in scenarios where ecosystem-based conservation policies have been employed although the impact depends on the fishery. In the MA, diversity of marine biomass was quite sensitive to changes in regional policy. Scenarios with policies that focused on maintaining or increasing the value of fisheries resulted in declining biomass diversity, while the scenarios with policy that focused on maintaining the ecosystem responded with increasing biomass diversity. However, rebuilding selected stocks did not necessarily increase biomass diversity as effectively as an ecosystem-focused policy (MA 2005d, p377). The MA concluded that policies that focus on maximising profits do not necessarily maintain diversity or support employment. Similarly, policies that focus on employment do not necessarily maximise profits or maintain ecosystem structures. The diversity of the stocks exploited can be enhanced if policy favours maximising the ecosystem

or rebuilding stocks. Diversity, however, is lost if the sole objective of management is to maintain or increase profits (MA 2005d, p342).

3.6.4 Gaps and limitations of the assessments

It is widely recognised that marine biodiversity is poorly understood. The MA points to a particular lack of knowledge of the deep sea, sea mounts, the mid-water column, and thermal vents (MA 2005d, p378).

The EcoOcean model does not consider climate or oceanographic conditions and as such cannot accurately model small pelagic fish groups that are heavily influenced by oceanographic conditions (IAASTD, 2008, p312). The tuna groups do not differentiate between long-lived slow-growing species such as bluefin tuna and short-lived ones such as yellow-fin. This can result in overestimation of tuna landings and optimistic assertions about the species' resilience. The lack of information on artisanal fishing, especially in Asia and several regions in Africa, results in some underestimation of landings and effort. Antarctic and Arctic models are incomplete, as catch, effort and biomass data availability is poor for these areas. Consequently they were not included in the IAASTD assessment (IAASTD, 2008 p313).

3.7 Freshwater biodiversity

Freshwater biodiversity is largely overlooked by the assessments except the MA. The MA considers freshwater ecosystems amongst the most threatened on Earth but notes that quantitative information on species richness and responses to anthropogenic pressures is still largely unknown (MA, 2005d, p379). The models consider the impacts of changing river discharge, eutrophication and acidification on the biodiversity of freshwater ecosystems.

Under all four scenarios, 70 per cent of the world's rivers, especially those at higher latitudes, are expected to experience increases in water availability due to increased precipitation caused by climate change. This may increase the potential for production of fishes adapted to higher flow habitats, which would most likely involve non indigenous species (low certainty). Under all scenarios, 30 per cent of the modelled river basins will be subject to decreases in water availability from the combined effects of climate change and water withdrawal. Based on established but incomplete scientific understanding, this is projected to result in eventual losses (at equilibrium) of 1–55 per cent (by 2050; 1–65 per cent by 2100) of fish species from these basins. According to the projections, climate change rather than water withdrawal is the major driver of species losses from most basins (80 per cent), with losses from climate change alone of about 1–30 per cent by 2050 (1–65 per cent by 2100). The differences among scenarios were minor relative to the average magnitude of projected losses of freshwater biodiversity.

Acidification and eutrophication are likely to have the most detrimental impacts under the *Global Orchestration* and *Order from Strength* scenarios. Of the three scenarios modelled (*Adapting Mosaic* was not modelled for freshwater impacts) *TechnoGarden* is the only scenario which projects regions of steady or declining nitrogen deposition and a less severe degree of acidification (MA, 2005d, p397).

It is important to note that projected losses of fish biodiversity on the basis of declining water availability alone will be underestimated. Many of the rivers and lakes in drying regions will also be vulnerable to increased temperatures, eutrophication, acidification and increased invasions by non indigenous species. These factors all increase losses of native biodiversity in rivers and lakes that are drying and cause losses of fishes and other freshwater taxa in other rivers and lakes. The MA concludes that much greater declines in freshwater biodiversity are likely to come from drivers that are more difficult to directly model such as local overfishing, construction of dams and impacts of alien invasive species (MA, 2005d, p398).

The MA also highlights that rivers that are forecast to lose fish species are concentrated in developing tropical and sub-tropical countries, where the needs for human adaptation are most likely to exceed governmental and societal capacities to cope. The current average GDP in countries with declining water availability is about 20 per cent lower than that in countries whose rivers are not drying.

3.8 Ecosystem Services

The results of the assessments are described below with respect to their implications for the provisions of ecosystem services, as set out in the MA framework (Figure 3.8). This has since become the basis from which the value of ecosystem services are commonly evaluated and assessed.

Figure 3.8 Ecosystem service framework. Source: MA (2003).

However, other than the MA, the assessments considered in this review do not specifically devote attention to the impact of future pressures on ecosystem services. Indeed, the extent to which biodiversity loss will impact on ecosystems and their services is highly uncertain. For example, ecosystems may often cease to provide some services long before species extinctions are observed (see Boxes 3.3 and 3.4).

The MA distinguishes between two types of ecosystem services which it highlights as having broad policy implications. Type-I refers to the abundance of individuals and includes provisioning services such as food and fibre and regulating services such as soil erosion and cultural services such as aesthetic value. The provisioning of the service depends on individuals present (e.g. a 50 per cent decline of fruit tree abundance provides 50 per cent less fruit) and it refers to the health of populations at a local scale. Loss of Type-I ecosystem

services can be reversed through conservation efforts. It is estimated by habitat loss and local extinctions. Type-II ecosystem services relate to the unique genetic combinations resident in the population rather than the number of copies of the combination. It includes the provisioning of genetic resources, which are the basis for plant breeding, biotechnology and the development of pharmaceuticals. The loss of Type-II ecosystem services is thus irreversible and is best estimated by measuring global extinctions (MA, 2005d, p403).

Box 3.3. Biodiversity and ecosystem services (taken from Braat and ten Brink, 2008. Adapted from MA, 2005c)

• Species composition is often more important than the number of species in affecting ecosystem processes. Conserving or restoring the composition of communities, rather than simply maximising species numbers, is critical to maintaining ecosystem services.

• The properties of species are more important than species number in influencing climate regulation. Climate regulation is influenced by species properties via ecosystem level effects on sequestration of carbon, fire regime, and water and energy exchange. The traits of dominant plant species, such as size and leaf area, and the spatial arrangement of landscape units are a key element in determining the success of mitigation practices such as afforestation, reforestation, slowed-down deforestation, and biofuels plantations.

• The nominal or functional extinction of local populations can have dramatic consequences in terms of regulating and supporting ecosystem services. Before becoming extinct, species become rare and their ranges contract. Therefore their influence on ecosystem processes decreases, even if local populations persist for a long time, well before the species becomes globally extinct.

• Preserving interactions among species is critical for maintaining long term production of food and fibre on land and in the sea. The production of food and fibre depends on the ability of the organisms involved to successfully complete their life cycles. For most plant species, this requires interactions with pollinators, seed disseminators, herbivores, or symbionts. Therefore, land use practices that disrupt these interactions will have a negative impact on these ecosystem services.

• The diversity of landscape units also influences ecosystem services. The spatial arrangement of habitat loss, in addition to its amount, determines the effects of habitat loss on ecosystem services. Fragmentation of habitat has disproportionately large effects on ecosystem services.

3.8.1 Provisioning services

Food production and reducing hunger

In 2000 the world committed itself through the Millennium Development Goals to reducing the number of structurally malnourished people by half by 2015. Key to achieving this goal is ensuring a secure, sufficient and affordable food supply. Food price increases lead to the number of people suffering from hunger. Due to the importance of maintaining a secure food supply many countries employ trade barriers and income support for farmers.

Global food production has increased by 168 per cent over the past 42 years. The production of cereals increased by about 130 per cent, but is now growing more slowly. Despite this, an estimated 852 million people were undernourished in 2000–02, up 37 million from the period 1997–99. Of this total, nearly 96 per cent live in developing countries. Sub-Saharan Africa is

the region with the largest share of undernourished people (MA, 2005c; cited in Braat and ten Brink, 2008).

Neither the GEO-4 nor the IAASTD, which examine progress towards the Millennium Development Goal with respect to extreme hunger, expect it to be met. Both interpret the goal in terms of malnourished children aged between zero and five years. The IAASTD projects that in the absence of new policies the number of malnourished children will reduce from 150 million in 2000 to 130 million in 2025 and to 100 million by 2050. Malnutrition in children in Sub-Saharan Africa in particular will remain a problem, while in some other areas the goals *will* be met, The number of malnourished children is projected to roughly halve by 2050 under scenarios that implemented targeted policies, such as the GEO-4 scenarios *Policy First* and *Sustainability First* (UNEP, 2007, p429) and policy scenarios under the IAASTD (Kok *et al.*, 2008).

Figure 3.9 Increase in crop yields between 2000-2050, according to the FAO and three of the assessments discussed in this report. (Source: Bruinsma (ed), 2003; UNEP, 2007; IAASTD, 2008; OECD, 2008. Taken from Kok *et al.* 2008).

All scenarios expect food productivity to rise (see section 3.2.1 above; Figure 3.9; Appendix 2.2). The market scenarios see the highest overall increases in food production. Under the MA scenario *Global Orchestration* the global food output increases by 72 per cent, with a four-fold increase in Sub-Saharan Africa. This is attributed to large increases in agricultural research and supporting infrastructure as well as a rapid increase in land under irrigation. The IAASTD projects increases lower than the historic rate if no new policies are implemented. However, the high investment scenario produces significant increases, including a three-fold increase in Sub-Saharan Africa.

Despite food production rising in all scenarios, food availability does not always increase at the same rate. Regional policies appear to have a negative effect. Under the GEO-4 scenarios, modest increases due to low technology investment and knowledge transfer under *Security First* are cancelled out in Africa and West Asia by rising population growth, ultimately leading to a dip in calorie intake after 2040. In the MA, the *Adapting Mosaic* scenario results in food produced on expanded crop areas being insufficient for demand causing food price increases and an increased demand for imports.

Total fish consumption has declined somewhat in industrial countries, while it has increased by 200 per cent in the developing world since 1973. For the world as a whole, increases in the volume of fish consumed are made possible by aquaculture, which in 2002 is estimated to have contributed 27 per cent of all fish harvested and 40 per cent of the total amount of fish products consumed as food (MA, 2005c: cited in Braat and ten Brink, 2008).

Fuel

Provision of fuel can be separated into natural fuel wood and biofuels. Whilst fuel wood still comprises a large part of the total energy use in some areas, it is fuel in the context of biofuels that is more often assessed, as in the MA. Although the current usage of biofuels is fairly modest, it is projected to greatly expand in the future. Under the Global Orchestration scenario, expansion of biofuel production is the highest out of all four MA scenarios at 384 mega tonnes per year, a six fold increase on today's production levels. The high production is attributed to the fact that competition with food production is projected to be low since there is a high level of investment in more efficient crop growth under this scenario and also that electricity demand is high owing to strong economic growth. However, as a consequence of high biofuel production, deforestation rates are also increased. Global production of biofuels under the TechnoGarden scenario is projected to increase four fold from current levels, the main influence behind this being a focus on climate policy. Under the Order from Strength scenario, energy crops have to compete with food crops for land. This scenario projects the largest population increase of all four scenarios which coupled with low productivity of croplands (from little investment in agricultural technology) means that land and biofuels are more expensive. Despite this, biofuel production does increase from current levels by a factor of approximately two.

Water availability

The MA examined water availability, which they defined as the sum of average annual run off and groundwater recharge. This gives a figure of the total volume of water that is annually renewed by precipitation and which, in theory, is available for the requirements of both society and freshwater ecosystems. Current global water availability was estimated to be between 42,600 and 55,300 km³ per year (MA, 2005d, p345). Global water availability projected from the four MA scenarios did not show as large differences between scenarios as there were between regions. By 2050 global water availability is projected to increase by between five and seven per cent, depending on the scenario being considered. Latin America sees the smallest increase in water availability (approximately two per cent depending on scenario). The small changes in water availability projected up to 2050 owe themselves to increasing precipitation leading to increased runoff on the one hand and warmer temperatures intensifying evaporation and transpiration leading to decreased run off on the other. By 2100 the differences in global water availability between scenarios are still not as great as the differences between regions. It should be noted that whilst an increase in water availability in this context can increase water supply for society and freshwater ecosystems, it can also lead to more instances of flooding.

Overall, the *Global Orchestration* scenario projects the largest global increase in water availability of all four scenarios by 2100 (17 per cent increase). Under this scenario, the fastest rate of climate change is projected. In contrast, the scenario where the lowest rate of climate change is projected, *TechnoGarden*, projects the smallest change in global water availability (seven per cent)..

Furthermore, although availability is projected to increase in most areas, there are important arid areas where availability is projected to decrease including the Middle East, Southern Africa and Southern Europe. These areas are projected to see a decrease in water availability of approximately 50 per cent from current levels under all four MA scenarios.

Water stress denotes reaching the limits of water quality as well as water quantity (Cosgrave and Rijsberman, 2000) and is a situation where low water supplies limit food production and economic development and affect human health. According to the OECD, 44 per cent of the world population in 2005 lived in areas of severe water stress and the situation is projected to worsen, with an additional 1 billion people (or 47 per cent of the world's population) projected to be living in areas of severe water stress by 2030 (OECD, 2008, p222). The main increase in population affected is likely to be India, followed by China, Africa and the Middle East.

Other provisioning ecosystem services

Other provisioning ecosystem services include genetic resources and biochemical discoveries. These services were not directly evaluated by the MA but preliminary judgements were made in terms of the four scenarios in the assessment. Under the *Global Orchestration* and *Order from Strength* scenarios, genetic resources may severely decline whilst under the *TechnoGarden* and *Adapting Mosaic* scenarios, they are projected to be roughly the same as current levels. All of the projections regarding these provisional services have a low certainty.

3.8.2 Regulating ecosystem services

Soil erosion control

Soil degradation can occur through chemical degradation, physical deterioration and water erosion. For the purposes of the MA, water erosion was used as the indicator of soil degradation. The MA water erosion index was calculated by combining trends in climate and land use change with the erosibility index. Whilst water erosion of soils is influenced by natural conditions, the way that soil is utilised can have significant effects. The rate of soil erosion can be driven by a number of factors including agricultural practices, land use change (especially vegetative cover) as well as precipitation changes resulting from climate change. The damaging effects of soil erosion in terms of ecosystem services is seen plainly in productivity loss of soils that are vital to world food production. Soil erosion also plays a role in climate change since it contributes to GHG emissions.

A number of the assessments model future soil water erosion risk in the context of land-use change and climate change (MA and GEO-4). All scenarios under the GEO-4 assessment predict a 50 per cent increase in the global extent of soils with high water erosion risk compared to the current situation. The risk increases after 2025 for *Sustainability First* as more biofuel crops are introduced. The increases are largest under *Policy First* due to larger food demand and increased demand for biofuels.

The scenarios in the MA project very similar levels of risk in terms of the global area of soils at risk of water erosion up to 2050. The *Order from Strength* scenario is projected to result in the highest risk of water erosion with 32 Mkm² of the global area of soil considered to be at high risk. The MA scenarios show greater divergence by 2100 where the global area of soil at risk from water erosion is projected to have doubled from year 2000 levels to approximately 40 Mkm² under the *Order from Strength* scenario. Under this scenario, the largest increase in agricultural land is projected to occur. The risk of water erosion is largest in agricultural areas, so it follows that under this scenario, soil erosion risk is projected to be highest among all four scenarios. The *TechnoGarden* scenario projects the smallest global area at risk from water erosion by 2100, with 31Mkm² projected to be at high risk. Under this scenario there are relatively low population levels and more ecologically proactive agricultural practices are projected to be in place.

There are regions of the world where the risk of water erosion of soils is expected to decline (OECD regions Central Europe, Australia and New Zealand), mainly as a result of a decrease in area being used for grazing.

Climate regulation

Ecosystems have an important role in climate regulation. The MA considers that under the *Global Orchestration* scenario, this role would become more important to all countries. However, the future capacity that ecosystems will have for carbon sequestration in wealthy countries is uncertain. Under the *Order from Strength* scenario, it is projected that the capacity of ecosystems to regulate climate will decline, primarily due to a lack of international coordination present under this scenario. Despite advances in engineering ecosystems present in the *TechnoGarden* scenario, it is unclear as to whether this would markedly improve ecosystem capacity to sequester carbon beyond the level achieved in *Global Orchestration*. Overall, none of the MA scenarios project clear effectiveness of land ecosystems in climate regulation on their own, without additional management (MEA, 2005d, p355).

Water purification

Water purification is defined in the MA as the process whereby freshwater ecosystems, such as wetlands, helping to deteriorate or remove substances that are hazardous to the health of humans and the ecosystems themselves. Under the Global Orchestration scenario, there is a divide between wealthy and poor nations in the capacity of ecosystems to purify water. In wealthy nations, break downs in water purification are fixed when they occur whereas in poorer nations a net loss in water purification by ecosystems is projected. The main drivers fuelling the break down in water purification are projected to be the speed at which ecosystems are degrading, high waste loads overloading ecosystems and the reduction in wetland area due to increases in population and agricultural land. Under the Order from Strength scenario, water purification declines in all countries and in the case of some poorer nations, the water purification capacity of some ecosystems decreases to lower levels than projected under the Global Orchestration scenario. Under the Adapting Mosaic scenario, localised protection of wetlands means that an increase in the water purification capacity of ecosystems is projected. Even though the TechnoGarden scenario projects the smallest environmental pressures out of the four scenarios, the time taken for reengineering of ecosystems is slow resulting in little net change in projected water regulation by 2050. There are, however, improvements made in poorer countries owing to the time lag present in ecosystem engineering and in some countries, avoiding mistakes made in wealthier countries (MEA, 2005, pp358-359).

Coastal protection

The level of coastal protection provided by ecosystems was considered by the MA with respect to the adaptive capacity of nature (e.g. existence of coral reefs and mangroves) and society as well as the extent of sea level rise. The MA projects with medium certainty that there will be a higher storm risk to all coastal populations under all scenarios due to sea level rise, the risk being relatively higher in poorer countries. Among the scenarios of the MA, coastal protection is projected to remain around the same as current levels under the *Global Orchestration* scenario owing largely to the reactive approach to environmental protection taken. A similar picture emerges from the projections for coastal protection under the *Order from Strength* scenario, but degradation of coastal ecosystems in some poorer nations leads to a large loss of coastal protection. Owing to the regional approach taken under the *Adapting Mosaic* scenario, it is likely that storm protection would feature as a priority and hence it is projected that improvements to coastal protection will be made under this scenario.

3.8.3 Supporting services

Supporting ecosystem services are those that are necessary for the production of all other ecosystem services. Their impacts on people are indirect or occur over a long time frame and include nutrient cycling, soil formation, primary production and provisioning of habitat. In general, the scenarios in which people handle environmental problems in a reactive manner more often than not—*Global Orchestration* and *Order from Strength*—do not focus on maintaining supporting services. The short-term approach to fixing the most immediate problems does not allow for full consideration of long-term services such as the ones in this category. Thus supporting services are projected to undergo a slight, gradual decline in these two scenarios. This decline is likely to go unnoticed until it causes significant changes. On the other hand, the two scenarios in which some environmental actions are proactive, *Adapting Mosaic* and *TechnoGarden*, may give some consideration to the management of certain supporting services, causing them to remain steady throughout these scenarios.

3.8.4 Gaps or limitations in the models

Certain ecosystem services, such as cultural and supporting services, pose particular challenges in relation to modelling and have not been modelled in the assessments. Assessments under the MA made for these services are qualitative based on expert opinion (2005d, p360). In addition, other services are referred to but not modelled directly, such as pollination and biological pest control.

Non-linearity in the flow of services could be a major issue because there are likely to be thresholds of biodiversity required beyond which the ecosystem services decline rapidly (see Box 3.4). As a result significant loss of ecosystem services may occur long before key species become globally extinct (MA, 2005d p377). However, such thresholds are not addressed in any of the models.

Box 3.4. Critical thresholds/tipping points

A 'critical threshold' can be defined as a point between alternate regimes in natural systems. When a threshold in a certain variable in a system is passed, the system shifts in character and the provision of certain ecosystem services may be lost. Once crossed, it may be difficult (or impossible) and costly to return an ecosystem to its original state. Thresholds may include a minimum habitat size to support viable populations of species or a minimum number or density of a species to remain stable (ten Brink *et al.* 2008).

3.9 Costs of biodiversity and ecosystem service loss

Access to knowledge about the economic impact and costs of the various policy options regarding biodiversity is essential to making informed policy decisions. This area is not extensively covered in the global assessments, which do not systematically attempt to estimate the cost of losing ecosystem services or the costs of preventing such loss. As such, no new modelling exercises were carried out in the global assessments. This following section contains a summary of the references made to the issue in the global assessments and includes a summary of the *The Cost of Policy Inaction* (COPI) study carried out as a support document for TEEB (Braat and ten Brink, 2008).

3.9.1 Cost of policy inaction

The debate around the cost of ecosystem loss has become increasingly topical since Costanza *et al.* (1997) attempted to provide an estimate of the total economic value of Nature's services. Their result – USD \$33 trillion per year for the value of ecosystem services compared to \$18 trillion of the global economy – has been criticised on the one hand for extrapolating marginal valuations to entire global ecosystems and on the other for being a "significant under-estimate of infinity" (Toman, 1999; cited in Braat and ten Brink, 2008).

The OECD (2008, Chapter 13) reviews literature on the cost of policy inaction in three areas of environmental policy: i) health impacts from air and water pollution; ii) fisheries management; and iii) climate change. With regards to fisheries, it quotes evidence from Bjorndal and Brasao (2005) that the net present value of retaining the existing ineffective fishery management regime for East Atlantic bluefin tuna is only one third of what would be achieved from an optimal regime of restrictions on gear selection. A separate study found that the lost net present value of continuing the existing excessive fishing regime of 13 "overfished" fish stocks in US waters was USD \$373 million compared to implementing stock "rebuilding" plans developed by Regional Fishery Management Councils (Sumaila and Suatoni, 2006; cited in OECD, 2008). This made the current excessive fishing practices almost 3 times as expensive as the recovery plans. The OECD points out that although the cost of ecosystem service loss is often borne by those who exploit the resource, others may bear some of the costs. For example, after the collapse of the Canadian cod stock, an estimated CAD\$3.5 billion was spent on income support and government assisted programmes for fishers, placing the burden on tax payers (OECD, 2006; cited in OECD, 2008).

In 2008, Braat and ten Brink carried out an assessment of the cost of current and projected losses of ecosystem services in the study of COPI, which considered a mixture of cost types: actual costs, income foregone (e.g. lost food production) and stated welfare costs (e.g. building on willingness to pay estimation approaches). Some costs can be directly translated into monetary terms that would feed directly into GDP; some would have an effect indirectly, and others would not be picked up by GDP statistics. This study used the GLOBIO model to estimate changes in natural areas and biomes, and attached monetary values associated with the ecosystem services of the biomes, using a significant literature review at each stage to determine these values. To compensate for gaps in the literature, assumptions were made about the relationship between ecosystem service provision and landuse type within a biome (also see Figure 4.1 below). The study found that the loss of welfare from the reduction in land based ecosystem services amounted to around 50 billion EUR per year starting in 2000, increasing every year that biodiversity loss continues. By 2050, under a business as usual scenario, expected cumulative losses between 2000 and 2050 would amount to \$14 trillion per year from the loss of land based ecosystems alone, constituting 7 per cent of GDP by 2050.

These figures are estimated to be conservative as: i) they do not consider all ecosystem services (losses from coral reefs, fisheries, invasive alien species and wetlands are omitted); ii) the projected rate of loss is calculated from a "middle of the road" economic and demographic scenario; and iii) values do not consider non-linearities and threshold effects.

3.9.2 Cost of policy action

Costing policy actions provides an opportunity to compare policy options against the cost of a business as usual scenario. The GBO-2 considers six policy options and estimates if the impacts of policy scenarios on the economy will be positive or negative. The policies are:

- i) liberalisation of the agricultural market;
- ii) alleviation of extreme poverty and hunger in Sub-Saharan Africa,
- iii) limiting climate change;
- iv) sustainable meat production and consumption;
- v) increasing the area of plantation forestry; and
- vi) extending the protected areas to 20 per cent of each biome.

It concludes that policy options for sustainable meat production, increased plantation forestry and protected areas do not have a major impact on the broader economy given that meat and forestry sectors only form a small part of national economies (in the order of 1 per cent; FAO, 2004; cited in sCBD and MNP, 2007). Both sustainable meat consumption and production policies and extending effectively protected areas had an immediate effect on reducing the rate of biodiversity loss, suggesting these were good value-for-money policies. Trade liberalisation and poverty reduction results in a loss of biodiversity in the short to mediumterm while having a positive impact on GDP. Climate change mitigation is considered to have negative impacts on both biodiversity and GDP in the short- to medium-term due to expansion of land required for biofuels, although it is expected this is partially because 2050 is too short a time period to experience the positive impacts of climate change mitigation. The distribution of benefits varies from region to region, with Sub-Saharan Africa expected to benefit economically from liberalisation, poverty alleviation and climate change mitigation, but suffering significant losses to biodiversity (sCBD and MNP, 2007; p37). The report does not provide a cost-benefit analysis assessing the overall welfare impact of losing biodiversity but gaining increased economic growth.

The GBO-2 quoted evidence that establishing and running a global reserve system (15 per cent land, 30 per cent sea coverage) would cost approximately \$30 billion per year (see Balmford *et al.*, 2003; Balmford. and Whitten, 2003; James *et al.*, 1999a; cited in sCBD and MNP, 2007). Increasing forestry plantations would involve government subsidies or tax exemptions of approximately \$10 billion (Ernst and Durst, 2004; cited in sCBD and MNP, 2007, p28). Other models have looked at the cost of reducing deforestation rates through REDD programmes (see Section 3.5.3).

The other assessments do not attempt to reflect the cost of policy actions in monetary or GDP terms.

3.10 Policy options

Ecosystem degradation can rarely be reversed without actions that address the negative effects or enhance the positive effects of one or more of the five drivers of change: population change (including growth and migration), change in economic activity (including economic growth, disparities in wealth, and trade patterns), sociopolitical factors (including factors ranging from

the presence of conflict to public participation in decision-making), cultural factors, and technological change (MA 2005a, p19).

3.10.1 Improving governance for agricultural technology transfer

The IAASTD highlights the need for innovative governance and finance models to ensure the adoption of ecologically and socially sustainable agricultural systems. It states that sustainable agricultural practices are more likely when the institutional arrangements provide secure access to credit, markets, land and water for individuals and communities with limited resources. The assessment acknowledges the positive impacts of international trade but warns that without the appropriate national institutions and infrastructure in place it can impact negatively on poverty alleviation, food security and the environment. The future direction of agricultural knowledge science and technology (AKST) could be improved by internalising the environmental externalities and rewarding activities for environmental services. It suggests that this could help tackle problems such as exportation of soil nutrients and water, and unsustainable soil or water management. Likewise, targeted AKST investment that recognises the multifunctionality of agriculture, of commodity output and non-commodity/public good outputs could assist progress towards development and sustainability goals (IAASTD Summary for policy makers, p6).

3.10.2 Biotechnology and biodiversity

In spite of the limited growth in the development of transgenics, it is possible that these technologies will re-emerge as a major contributor to agricultural growth and productivity.

This may be particularly required in response to climate change related challenges such as prolonged drought and warmer temperatures. The IAASTD states that genetic engineering could have a key role in meeting these challenges, reducing vulnerability of crops to climatic and other shocks and reducing natural resource scarcity. Transgenic crops could increase crop yields and thus reduce expansion into natural and uncultivated areas.

One of the main risks to biodiversity is the out-crossing of genes to wild relatives, although the risk of crops persisting in the wild is considered relatively low. Out-crossing could be prevented by the use of genetic restriction of its reproductive capacities, but this is controversial as it prevents farmers from saving seed from one season to the next (IAASTD 2008).

3.10.3 Ecosystem-based approach to fisheries management

The assessments concur that strong international coordination and an ecosystem approach will be required to manage the multiple pressures on capture fisheries. The OECD contends that the negative trends in capture fisheries can be reversed by further measures to limit total catch levels, designate fishing seasons and zones, regulate fishing methods and eliminate subsidies for fishing capacity (OECD, 2008, p32).

3.11 Conclusions

All the assessments agree that substantial biodiversity loss will continue under all the considered policy scenarios. These scenarios include protecting 20 per cent of ecosystems in all regions of the world (which is an ambitious target) and reducing meat consumption; but both measures only result in minor biodiversity conservation benefits according to the projections and the MSA indicator. As noted above, this conclusion is surprising and may be due to the sensitivity properties of the MSA indicator, and/or models. Furthermore, the

majority of the assessments used the MSA as the principal indicator of all projected biodiversity impacts. Thus most of the conclusions in this report are based on this one indicator, which highlights the need to ensure that it is as robust and sensitive as possible. This issue is addressed further in Task 3.

Although the minimal projected impact of protected areas is questionable, it is clear that, ultimately it is the drivers such as increasing population growth and prosperity,that have an overwhelming influence on biodiversity outcomes. Their impacts vastly outweigh specific measures that attempt to protect biodiversity. For example, our increasing demand for energy continues to exacerbate climate change which becomes a significant pressure on biodiversity. Scenarios which attempt to deal effectively with climate change assume a greater use of biofuels which increases demand for land and water resources and has adverse effects on soil erosion.

In addition, most assessments make optimistic assumptions about the increased productivity of agriculture, which could significantly reduce the need for expansion of agricultural land into natural areas. Therefore, according to these assessments, the productivity increases are key to ensuring that biodiversity losses are not even greater than those forecast in the models. Investment in agricultural knowledge and research will be vital to ensuring this happens.

The consequences of biodiversity loss on ecosystem services is unclear. There is evidence to suggest that ecosystems may require a minimum quality (e.g. abundance and diversity of species) to maintain many important ecosystem services. Below such critical thresholds, ecosystems reach a tipping point, and may suddenly switch their character, no longer providing the ecosystem service. Furthermore, the restoration of such ecosystems, if possible at all, is likely to be very difficult and costly.

The GEO-4 assessment contends that biodiversity loss continues because current policies and economic systems do not incorporate the values of biodiversity effectively in either the political or the market systems and many policies that are in place are not implemented fully (UNEP, 2007, p159).

Given the projected expansion of the global economy to 2030, failure to act on environmental challenges will undoubtedly result in greater impacts on biodiversity and ecosystem services in the future. Natural resource sectors will find demand increasing for their output as large economies (e.g. Brazil, the Russian Federation, India and China) continue to experience rapid growth. Sectors such as agriculture, energy, fisheries, forestry and minerals will need to have strong policies in place to reduce the environmental impacts of this rapid growth (OECD, 2008, p75).

4 ASSESSMENT OF IMPACT OF KEY ASSUMPTIONS

4.1 Description of Task 3 from the ToR

With respect to the aim of Task 3 the ToR states (with our emphasis added of key points):

- A) "The assessment should examine how changes in key assumptions affect the results of different models with a focus on either the impact on ecosystem services or on the economy more generally".
- B) "The assessment should have a consideration of
 - 1. the extent to which the scenario-model studies could be used for making large-scale assessments of the impacts of the loss of biodiversity and ecosystem services worldwide, and
 - 2. also of how such models could be adapted to better assess policies (including coupling of biophysical models with economic models to assess the wider effects on the economy)."

With respect to the methods to be employed, the ToR states:

A) "This should be done through

- 1. the identification of a number of key assumptions (or drivers) with the Commission and then
- 2. an *examination of how these influence the models* (generally involving identification of a baseline and then of an alternative scenario)".

B) "Amongst the assumptions to be examined should be:

- 1. *a selection of exogenous factors* (like population growth, demand for natural resources and energy, etc) and
- 2. *a selection of policies* affecting biodiversity and ecosystems, such as agricultural or fisheries management decisions, timber logging/deforestation, or strict conservation".
- *C) " The choice of the key assumptions and models to be examined should be*
 - 1. determined during the carrying out of the previous tasks, and
 - 2. agreed with the Commission."

4.2 Methods

4.2.1 Assessment of key assumptions

It was recognised from the very beginning in this project (Inception meeting, January 2009) that it will not be possible to carry out an analysis of the sensitivity of models to policy impacts and other parameters by running models and comparing results. This recognition was based on the realisation that to run models the study team would need full access to the models, meaning (1) having operational, running versions of the models on computers capable to do so, (2) manuals to operate the models or aid from the original model builders and computer-code programmers, (3) the source code with explanations, (4) full documentation of the technical format of the model (mathematical equations, input data files, parameter settings, initial condition settings) and (5) access to a help-desk. To be able to compare results (of model runs), the study team would need full access to the output of model runs, with full documentation of the runs, including scenario-input files. The time and financial budget available for the assessment, made this approach impossible.

However, it was expected to be possible to identify potential weaknesses and key assumptions by an examination of the descriptions of model structure and applications of models in scenario-driven assessments. To test this expectation information was gathered and examined with respect to descriptions of the models and of applications of the models. The major sources have been the descriptions as produced through Task 1 of this project, summarised in tables (see Appendix 1), and the literature obtained from a literature search also provided through Task 1 (see list of references). Adequate documentation for Task 3 was only available in "bits and pieces". The description of models and applications does not provide enough detail for a reliable comparative assessment across the collected set of models. The published descriptions of models and results of applications present the output in relation to the general structure of the models and to the general features of the scenarios used to produce the model output, but only a few incomplete cases is detailed documentation available that the desired assessment could be made.

The study team therefore decided to (1) work with the material available, and (2) go through a phase of selection of models which would reflect the relevance and quality of the models at a general level, to be able to spend the available budget on an assessment of those models which were deemed most promising. The results of this limited assessment are presented in section 4.3.

4.2.2 Selection of models

In the ToR it is mentioned that the "task will consider in detail a subset of the models included in Tasks 1 and 2". It was clearly necessary from the results of Task 1, the inventory of models, scenarios and assessments, to restrict the coverage of models to enable an examination of their structure and assumptions in sufficient detail to draw useful results. The first analytical steps in Task 3 were therefore a systematic screening and evaluation of the collected models, based on an explicit set of criteria, reflecting the ToR. The criteria were discussed within the project team and agreed upon by the project leader.

As it was required that the work under Task 3 should look into to the usability of the scenarios and models in a TEEB context, this was part of the screening and evaluation criteria. Furthermore, in the selection process, the potential of individual models with respect to their degree of adaptability to key factors and to help with selection of appropriate policies was addressed. The issue of how to introduce "additional" policies to the models should also be examined, and following the Workshop (see Task 4 chapter) some views are presented in section 4.4.

The starting point of the selection process, and thus of the definition of the selection criteria is that the selected models will be those that include policy assumptions that are of most importance and relevance to TEEB and will be able to address a number of points:

- Address a variety of themes and policies
- Allow for new types of approaches and thus be a bit creative
- Be able to be adaptable, thus in the future allow expansion/adds-on or modifications.

The following selection criteria were applied to the set of models provided through Task 1. 1. Suitability for TEEB scenario-studies:

a) Quantity and quality of ecosystems services (in relation to land and marine ecosystem use); e.g. give output in terms of provisioning services (crops, meat, fish, timber, water etc.), regulating services (carbon sequestration, water

purification, flood mitigation, local pest control, natural pollination), cultural services (biodiversity measures appreciated by tourists, information content), supporting services.

- b) Economic value as output parameters or the possibility to link ecosystem (goods and) services directly to economic parameters (services specified in terms of physical units per unit area per unit time, localised and linked to specific economies)
- c) Global regionalised output (*preferred above specific case regions which may contribute adaptive modelling efforts*).
- 2. Earlier application within assessments: The assessments may be global, sectoral or regional
- 3. Availability to assessments within TEEB

This criterion is secondary, as it indicates rather a practical aspect of TEEB process than a quality of the model or assessment study. (*The team realises that some models have been developed with great effort and great cost, sometimes by public funds and sometimes by private enterprise. Also, models as simplifications of reality tend to be most effective in policy analysis when the original modellers who implemented the simplifications are involved in the analysis. The availability in the "public domain", published or on internet (e.g. software products available and free to use) may however be of interest to TEEB in the long run).*

The scoring method used to rank the models of the inventory (see Task 1) is very basic. The number of criteria for which the model delivered some kind of relevant contribution was counted. Several models did not incorporate features which made output in terms of ecosystems services, biodiversity indicators, or economic values possible. In these cases a blank was left in the spreadsheets (see *Annex to Chapter 4*). Spatial resolution was also scored and global models without any spatial specification by region or grid-cell produced a zero score on this criterion. If some kind of regionalisation was available, a grey spreadsheet-cell was indicated.

4.2.3 Technical evaluation of the selected models

The selected models have subsequently been evaluated for the following five aspects:

- 1. General quality; this includes aspects on the extent of parameterisation, calibration and validation of the model, and whether the models have been peer reviewed and if available the results of such reviews.
 - a) Parameterisation to what extent has the model been parameterised using data?
 - b) Calibration to what extent has the model been calibrated to generate sensible output?
 - c) Validation to what extent have the model results been validated?
 - d) Peer-review of model is the model peer reviewed or not?
 - e) Peer review results what is the result of that peer review?
- 2. Assumptions; what are the main assumptions about dynamics (*drivers, feedbacks, distributional; trade flows, spatial physical processes; human behaviour, behaviour of economic agents, governance*) in the models and scenarios affecting the outcomes for ecosystem services and economic aspects. How robust are the results? Drivers & assumptions description of the main drivers and assumptions in the model.
 - a) Feedbacks Description of feedbacks in the model

- b) Sensitivity sensitivity of the model output for changes in input or assumptions.
- c) Robustness of results.
- 3. Uncertainty; How certain are we about the input and output of the models.
 - a) Main uncertainties description of the main uncertainties in the models.
 - b) Uncertainty analysis (how) has an uncertainty analysis been carried out for the model?
- 4. Transparency; refers to how well documented the models and assumptions are.
 - a) Manual/model description availability is a manual and model description available covering al main relationships and interactions?
 - b) Documentation of assumptions and uncertainties are main assumptions and sensitivity explicitly reported?

In addition, the ToR requirements include an assessment of the adaptability of the models to accommodate other types of (policy) analysis than in previous applications. A special section in this chapter reviews the adaptability and potential of extension of the selected models with "special features" models (see Section 4.3.4).

4.2.4 Types of assumptions

With respect to scenarios, seven types of assumptions are distinguished, six of which are in the so-called "human" domain, and the last one, climate, in the natural environment domain.

- The human domain includes demographic aspects, with parameters such as total population growth rates, or various breakdowns into age classes (cohorts), regions, or sex.
- The second type, economic aspects, is often represented by a Gross Domestic Product indicator, but may also include consumption parameters, or income distribution aspects.
- The third type is sometimes incorporated as an explicit assumption of technological development, but is also in some cases built into the model-dynamics as an ever increasing efficiency parameter in energy use or production functions.
- The fourth type is split for this analysis in (1) general policy measures (part of the Response loop in the DPSIR diagram) or sectoral measures, basically enhancing the production processes, and (2) environmental, resource or biodiversity policies, basically modifying the economic production and consumption processes to achieve environmental goals.
- The fifth type is less specific, but is very much present in the story-lines of the exploratory scenario studies. It refers to different arrangements of political influence, e.g. top-down versus network versus bottom up.
- The sixth type is governance, e.g. relating to government performance and legal implementation.
- Finally, climate change, in various forms is becoming an exogenous driver in many models, following the climate change pathways resulting from e.g. the IPCC studies.

With respect to models, the different types of assumptions embedded in the model equations are assumptions for the land-use changes, for the change in other environmental factors (pressures), for the biodiversity dynamics and the equations describing the various ecosystem service processes, related to land use and other pressures, biodiversity and the drivers.

Thirdly we have addressed the assumptions behind the calculation of biodiversity indicators and ecosystem service indicators, as representations of the relevant output of the studies discussed in this Task 3. Of course, these may be part of the modelled dynamics and as such the relevant assumption may be discussed under that heading as well.

4.2.5 Indicators

Although not explicitly part of the ToR, a short discussion of the indicators for biodiversity and ecosystem services changes is included, based on a review of the most recent literature, and focusing on the indicators used most prominently in the models and assessments in the Task 1 inventory.

4.3 Results

4.3.1 Introduction

The results of the screening and selection of the models are presented in 4.3.2. The results of the evaluation on the technical criteria are presented in section 4.3.3. The adaptability is discussed in section 4.3.4. From the ambitions of TEEB project it was derived that the first filter would be the extent to which models are of a global scale, have been used in global Assessment studies and present results that would directly or indirectly be useful to TEEB objectives (see TEEB 2008). As to the types of scenarios distinguished in the Task 1 report, all types were considered useful at this stage of analysis. Terrestrial and Marine models were considered separately because the Task 1 inventory indicated that currently no models exist that combine the two, using similar approaches. Indicators for assessment of changes in biodiversity and in ecosystem services are discussed in section 4.3.5.

4.3.2 Integrated assessment models: the selection

First a preliminary selection of models that would best fit within the ambitions of TEEB was made using the criteria related to the extent the models consider the four different types of ecosystem goods and services (provisioning, supporting, regulating or cultural services) and biodiversity, if economic value is included in the output, the spatial scale of the output (whether global, regional or both, spatially explicit or not), and earlier application in global, sectoral or regional assessments.

Terrestrial models

Table 4.1 presents the top 4 terrestrial models from this evaluation step and Table 4.2 the top 3 marine models (see for full tables with features and score Annex 4.1 and Annex 4.2.

In the category of terrestrial integrated assessment models the IMAGE model, the AIM model, MIMES and the related GUMBO models received the best scores. The GUMBO and MIMES model are from the same modeling group, MIMES still under development to provide a spatially explicit version of GUMBO. The AIM model has a track record in the IPCC assessments, but it has proven to be very hard to assess the actual capabilities of the model, as there are many different "sub-models" with different degrees of documentation. The analysis in Task 1 indicates already the difficulty to pinpoint the qualities of this model. The IMAGE model has the most extensive track record in global assessments and has also been used as a basis for GUMBO/ MIMES. It is also a complex set of "sub-models" but there was documentation available for evaluation.

	Ecosystem S	ervice Provisio	n		Bio- diversity	Economic Value of Output	Scale of Output	Applicatio n in assessment
Model name	Provisioning services	Supporting services	Cultural services	Regulating services				
IMAGE	Agricultural production, including grass/ fodder production & livestock/ milk production, demand for wood products, timber, fuelwood	Soil fertility		Carbon flux, carbon plantations, ocean carbon, water-erosion sensitivity, air pollution, soil moisture	MSA through link with GLOBIO		Global (details for 24 world regions or 0.5° x 0.5° grid (land cover, land use)	SRES, MA, GEO, OECD, IAASTD, EURURALI S
GUMBO	Harvested organic matter, water supply, mined ores, and extracted fossil fuel	Soil formation (decompositi on), nutrient (N) cycling	recreation, cultural (pos.related to total biomass & density of social network, neg.related to human population size)	gas regualtion (C flux), climate regulation (temp.), waste assimilation, disturbance regulation (variation in total biomass)		valuation: marginal product of ecosystem services in both the model's production and welfare functions	global, 11 biomes globally aggregate d, not spatially explicit	
MIMES	Food production, production of raw materials	Soil formation, nutrient cycling	cultural	climate regulation, waste assimilation, disturbance regulation		valuation: marginal product of ecosystem services in both the model's production and welfare functions	global, 1° by 1° resolution	
AIM	Water supply, food and timber production			greenhouse gas emissions, air pollution, carbon sequestration ,human health (malaria distribution), flood damage	Vegetation distribution		Focused on Asian- Pacific region, but linked to a global model representin g 9 regions; 5° x 5°	SRES

 Table 4.1
 Best scoring terrestrial integrated assessment models

In the category of terrestrial integrated assessment models the IMAGE model, the AIM model, MIMES and the related GUMBO models received the best scores. The GUMBO and MIMES model are from the same modeling group, MIMES still under development to provide a spatially explicit version of GUMBO. The AIM model has a track record in the IPCC assessments, but it has proven to be very hard to assess the actual capabilities of the model, as there are many different "sub-models" with different degrees of documentation. The analysis in Task 1 indicates already the difficulty to pinpoint the qualities of this model. The IMAGE model has the most extensive track record in global assessments and has also been used as a basis for GUMBO/ MIMES. It is also a complex set of "sub-models" but there was documentation available for evaluation.

The models that did not get included in Table 4.1 were not selected for a variety of reasons as can be seen in the Appendix 3.1. Currently there is no comprehensive terrestrial model that

fullfills all TEEB ambitions of a full-scale (social and economic) assessment of the costs and benefits of biodiversity policy action scenarios, across all biomes, ecosystem services and economic values. For example, cultural services of ecosystems are only included in a limited number of models. In the MIMES and GUMBO models recreation is included as a cultural service. To be able to cover most ecosystem services and to allow analysis through all spatial scales that are relevant for impact assessment of policies, it seems necessary to combine an integrated assessment model with one or more sectoral models. Therefore a review is presented in 4.3.4. of models which are promising in "providing" additional capability to produce the desired TEEB assessments

a. IMAGE (Integrated Model to Assess the Global Environment)

The model covers a wide range of themes: demography, world economy, agriculture, energy supply and demand, emissions, land allocation, carbon, nitrogen and water cycle, climate change, land degradation. IMAGE uses input from Phoenix (demography) and has been linked to several other socio-economic models in global assessments, e.g. GTAP, Env-Linkages, WaterGAP, IMPACT. GLOBIO uses IMAGE output for the calculation of a biodiversity index. IMAGE is a global model with details for 24 world regions (energy, trade emissions) and/or 0.5° x 0.5° grid (land cover, land use). Drivers are population projections (from UN, IIASA, or from the PHOENIX model), economic drivers (from POLE Star), technological development, policy options and climate change.

b. AIM (Asian Pacific Integrated Model)

AIM covers energy consumption, land use change affecting water supply, vegetation changes (agriculture, forestry production), human health (malaria spread). It was selected as reference model in the Special Report on Emission Scenarios (SRES) and in Third Assessment Report (TAR) both of Intergovernmental Panel on Climate Change (IPCC) and also in the Global Environment Outlook (GEO) of United Nations Environmental Program (UNEP). AIM simulation results were used by many other international organizations including OECD, ESCAP, ADB, UNU, and WWF. The AIM can also be applied to other issues, such as local air pollution issues, acid rain problems, forest management policies and other energy, agricultural and water resource management problems. AIM was also used in the GEO assessments. AIM is a global model with 9 regions : USA, Western Europe OECD and Canada, Pacific OECD, Eastern Europe and Former Soviet Union, China and Central Planned Asia, South and East Asia, Middle East, Africa, Middle and South America (focussed on Asian-Pacific region, but linked to a global model), spatial resolution: 5° by 5°.

c. GUMBO (global unified metamodel of the biosphere)

GUMBO is a complex simulation model, with dynamic interlinkages between social, economic and biophysical systems on a global scale, focusing on ecosystem goods and services and their contribution to sustaining human welfare. The main objective in creating the GUMBO model was not to accurately predict the future, but to provide simulation capabilities and a knowledge base to facilitate integrated participation in modeling. There are many (>100) international collaborators. Drivers in the model are human population, knowledge and social institutions (rules and norms). They drive the rate of the material and energy flux. Both ecological and socioeconomic changes are endogenous to the model, with a pronounced emphasis on interactions and feedbacks between the two. Dynamic feedbacks are included between human technology, economic production, welfare and ecosystem services. There are modules to simulate carbon, water, and nutrient fluxes through the Atmosphere, Lithosphere, Hydrosphere, and Biosphere of the global system. Social and economic dynamics are simulated within the Anthroposphere. GUMBO links these five spheres across

eleven biomes, which together encompass the entire surface of the planet. Limited degree of substitutability between natural and social, human and built capital. The 11 biomes are globally aggregated (open ocean, coastal ocean, forests, grasslands, wetlands, lakes/rivers, deserts, tundra, ice/rock, croplands, urban): areal land use, but is not spatially explicit. It is constructed in STELLA (a graphically supported simulation language) as a dynamic systems model, but in fact uses as a meta-model relationships based on outputs of more complex and computational intense models, a.o. IMAGE.

d. MIMES (Multiscale integrated model of ecosystem services)

MIMES builds on the GUMBO model to allow for spatial explicit modelling at various scales, MIMES is a metamodel that used output from several global models (IFs, IMAGE, CLUE, Phoenix, AIM, CLIMBER, EcoSim, IMPACT, WaterGAP, CENTURY, BIOME) to derive relationships between variables.

Marine models

Currently there is no comprehensive marine model that fulfills TEEB's ambition of a fullscale (social and economic) assessment of the costs and benefits of biodiversity policy action scenarios, across all biomes, ecosystem services and economic values. From a review of currently available marine models it was concluded that the marine model that best fulfils the needs of TEEB is the Ecopath with Ecosim (EwE) model developed by the Fisheries Centre at the University of British Columbia. Two other models which should also be considered by TEEB are the Cumulative Threat Model, developed by Ben Halpern and colleagues at the University of California, Santa Barbara (Halpern *et al.* 2008), and the Reefs at Risk approach, developed by the World Resources Institute (WRI), the International Center for Aquatic Living Resources Management (ICLARM), the UNEP World Conservation Monitoring Centre (WCMC), and the United Nations Environment Programme (UNEP). These last two models provide a contrast to EwE in their approach as they are based on combining spatial data layers as opposed to the mathematical approach of EwE where the outputs are derived from differential equations to quantify the ecosystem.

Model name	Ecosystem Service Provision				Bio- diversity	Economic Value of Output	Scale of Output	Applicatio n in assessment
	Provisioning services	Regulating services	Cultural services	Supporting services		output		ussessment
EwE, EcoSpace & EcoVal	Fisheries (inc. their ecosystem effects).	Biomass and fluxes	Economic valuation of resources (Ecoval).	Population dynamics (Top-down vs. Bottom-up controls)	x	EV under different management scenarios;	Multi-scale, ecosystem models. Ecospace: spatial representatio n & user- defined grid cells.	Millennium Ecosystem Assessment scenarios and the GEO-3 and - 4 projections.
Cumulativ e Threat Model for the global ocean	Impacts on fisheries/aquacu lture; abiility of ecosystems to provide non- living resources.	Impact ability of ecosystem to provide regulating services generally.	Impacts on recreation, aesthetic values and experience, spiritual enrichment etc.	Reduction in nutrient cycling ability (e.g. through dead zones/pollutio n); Impacts on habitats and their services.	x	benefits of highly impacted areas vs less impacted areas.	Global but can be applied at the local- and regional- scale; 1km ² resolution grid.	X
Reefs at Risk	fisheries; medicines; seaweed and algae for agar; Curio and jewellry; Live fish and coral for aquarium trade.	Nitrogen fixation; CO2/Ca budget control; Waste assimilation.	Recreational Value; ecotourism; sustaining livelihoods of local communities ; aesthetic value; support of cultural, religious and spiritual values.	Mantainence of habitats, biodiversity and genetic library; resilience; exchange between ecosystems; protection of shorelines; generation of coral sand; build up of land.	x	benefits of coral reefs; vulnerability of coastal habitats to natural hazards; human health; livelihood	Global coral reefs; 4km resolution	X

Table 4.2 Best scoring Marine Integrated Assessment models

(1) Ecopath with Ecosim (EwE)

The EwE model was deemed most suitable for inclusion in TEEB process. Although primarily applied to the fisheries sector, it is an ecosystem model and assesses the ecosystem status through the quantification of biomass at each trophic level. EwE covers a broad range of ecosystem services including provisioning, supporting and cultural services, and as such is relevant to the economic valuation of ecosystem goods and services under different management scenarios, linking to food security issues and economic impacts of bioaccumulation, among others. EwE is a multi-scale model which can be applied to any ecosystem scale as defined by the user, and has previously been applied as a component of integrated assessments, namely the Millennium Ecosystem Assessment and the GEO-3 and GEO-4. As part of the integrated assessments, EwE was linked with other models proving it can be adapted to a range of assessment applications. The model, including its sensitivities

and uncertainties, is well documented in the literature. Model outputs are based on actual data from stock assessments, ecological studies, and the literature, and model outputs are validated by time series fitting and uncertainties assessed using the 'Ecoranger' application. Although this leads to the assumption that the results are fairly robust, outputs from EwE are senstive to the input data used meaning the user is required to carefully select input data depending on the outcome required.

(2) Cumulative Threat Model

Halpern et al.'s (2008) Cumulative Threat Model assesses the impact of anthropogenic threats on the global ocean through an additive analysis of spatial data layers. As a global model which examines a wide variety of marine ecosystems, the outputs can be related to a broad range of ecosystem goods and services provided by marine habitats. As such, it is relevant to economic models via the implication that areas of the ocean that are more highly impacted will not be able to provide the quality and range of ecosystem goods and services when compared to less impacted areas, and subsequently loss of ecosystem goods and services will negatively impact the economic value of these habitats and may have implications for human health. The Cumulative Threat Model is a global model which can also be applied at local and regional scales. However, it has not yet been included as a component in broader integrated assessments or been soft-linked to other models, indicating that its adaptability is still unknown. The model, including its sensitivities, uncertainties and validation, is well documented in the online Supplementary Materials which accompany the peer-reviewed paper. Model outputs are based on statistics from governments and international organisations, observational data, remote sensing data, and secondary model outputs which are manipulated statistically and normalised prior to being combined to produce the final output. Although there are discrepancies in the data in terms of temporal variation and gaps, the extent of statistical treatment and documentation of this process is indicative of the ouputs being fairly robust.

(3) Reefs at Risk

The Reefs at Risk model illustrates a similar approach as the Cumulative Threat Model, through the addition of spatial data layers, and in some instances model outputs, to produce an output describing the degree of anthropogenic threat to coral reefs. In terms of ecosystem goods and services, the model applies to a broad range of ecosystem goods and services provided by coral reefs, including provisioning, regulating, supporting, and cultural services. Economic valuation of negative impacts on these services relate directly to food security and livelihood viability issues, the increased vulnerability of coastal communities and habitats to natural hazards, and the tourist trade. The original Reefs at Risk provides a global analysis, however later applications have been carried out at the regional scale demonstrating the multiscale nature of the model. Reefs at Risk has not yet been included as a component in broader integrated assessments or been linked to other models, indicating that its adaptability is still unknown. The model is documented briefly in the main publication's technical notes. Datasets used and their spatial and temporal variability are described, however, there is no indepth description of data manipulation undertaken (if any) in order to process the data layers for the final output. There is also no discussion of sensitivity or uncertainty analysis. It may be that the lead authors need to be contacted for this information, however, it is recommended that the robustness of the final outputs be approached with some caution.

General Conclusions on Integrated Assessment Models

The best model for TEEB assessment of terrestrial ecosystems at this point in time is the IMAGE model. It has the most extensive track record in global assessments (especially compared to GUMBO/MIMES), it covers a wide range of TEEB relevant themes (but not as

wide as GUMBO/MIMES), and is spatially explicit, readily available (compared to e.g. AIM) and has already been used as the basis for the Cost of Policy Inaction analysis included in TEEB phase I. It is, however not complete, perfect and easy to use. It does require actual involvement of the IMAGE team at the Netherlands Environmental Assessment Agency, and needs various extensions to allow for a full coverage of the MA range of ecosystem services. GUMBO/MIMES do have a wider set of services but not complete yet either, and MIMES is still under development as the spatially explicit (and improved in other respects) version of GUMBO. The dynamic feedback of changes in ecosystem services to economic indicators is very interesting to TEEB and a definite improvement on the IMAGE-GLOBIO-COPI-toolbox used in TEEB phase I, but it has not been reviewed (as we have been able to establish) by economists for its "meaning" in economic policy.

Overall, the marine model that meets TEEB selection criteria best is the Ecopath with Ecosim (EwE), mainly due to its high level of documentation and its inclusion in previous integrated assessments. This model does, however, provide only one approach based upon the quantification of biomass within an ecosystem. It may be that the additive methodology undertaken by the other two models described, the Cumulative Threat Model and Reefs at Risk, provide a more suitable approach in some cases depending upon the required outputs and the types of data available. The adaptability of these latter two models have not yet been tested (the Cumulative Threat Model was only published in 2008) and so an approach may be developed in order to integrate this type of model, through soft-linking or other means, with others in order to comprehensively inform TEEB process.

So far models of the marine and terrestrial "domains" have been developed in isolation. However, marine and terrestrial models need to be integrated to explore and highlight the important interlinkages, interdependencies and trade-offs among marine and terrestrial ecosystems. For example, marine systems provide regulating services which are relevant at global scales. These include the regulation of climate through the fixation of atmospheric carbon by oceanic algae and its eventual deposition in deep water, and the role that coastal wetlands play in water quality regulation by capturing and filtering sediments and organic wastes in transit from inland regions to the ocean. In terms of provisioning services, marine environments provide food, water, timber, and fibre (UNEP, 2006). More than a billion people worldwide rely on fish as their main source of protein (Halpern et al. 2008), a trade-off which is necessary to understand. Other provisioning services from marine ecosystems relevant to humans and terrestrial systems include building materials from mangrove and coral reef areas, and pharmaceutical compounds derived from marine algae and invertebrates. Finally, the marine environment provides supporting services for many terrestrial processes, including soil formation, photosynthesis, and nutrient cycling by healthy ecosystems, which support goods and services used by humans. Only by integrating models of marine and terrestrial domains can these connectivities be explored and the full impacts of policies on both the marine and terrestrial biomes be assessed.

4.3.3 Integrated assessment models: technical evaluation

The Technical assessment has concentrated on the preferred model (set of models). This technical evaluation deals with the following domains: quality, assumptions, uncertainty and transparency.

IMAGE

As a global Integrated Assessment Model, the focus of IMAGE is on large-scale, mostly firstorder drivers of global environmental change. Most of the relationships in IMAGE can be characterised as "established but incomplete knowledge". This obviously introduces some important limitations, particularly on how to interpret the accuracy and uncertainty.

IMAGE is calibrated against historical data from 1765-2000 (carbon and climate), data from 1970-2000 for energy and agriculture. These data were derived from large international databases (e.g. FAO). The sub-models have been validated. To date, no comprehensive and systematic exploration has been performed of key uncertainties and how they are propagated throughout the entire IMAGE model to influence the final results. What has been done in many instances is to look at uncertainties in underlying data and model formulations in subsystems of the overall framework, thus providing partial sensitivity analyses for IMAGE 2.4 framework. For a discussion of the sensitivity analysis of IMAGE 1 see Rotmans (1990). **IMAGE** has been reviewed by expert advisorv an board: http://www.rivm.nl/bibliotheek/rapporten/500110003.pdf

A large number of uncertain relationships and model drivers that depend on human decisions can be varied. Uncertainties in model parameters have been assessed using sensitivity analysis:

For the energy sub-model (TIMER; de Vries *et al.*, 2001), an elaborate uncertainty assessment pointed out that assumptions for technological improvement in the energy system and translation of human activities (such as human lifestyles, economic sector change, and energy efficiency) into energy demand were highly relevant for the model outcomes. The carbon cycle model has also been used in a sensitivity analysis (Leemans *et al.*, 2002). Central to climate change modelling are the responses to increased greenhouse gas concentrations. In the IMAGE model this concerns the responses in global temperature increase and local climate shifts. Another model element relevant to the biodiversity issue is the implementation of specific land-use allocation rules determining conversion of natural biomes (see preference rules in Alcamo *et al.*, 1998). These rules are most relevant for the calculated biodiversity value. Only a limited set of land-use change is implemented, that is obviously a simplification of actual land-use changes. This limits the assessment of careful land-use planning, for instance, bio-energy production and forest plantations on available, already impacted, areas instead of natural biomes.

EwE

The core routine of Ecopath is calibrated from the Ecopath program of Polovina (1984a; 1984b) modified to render superfluous its original assumption of steady state. Ecopath no longer assumes steady state but instead bases the parameterization on an assumption of mass balance over an arbitrary period, usually a year. Ecosim and Ecospace are both calibrated to the outputs of Ecopath. Ecopath is in turn recalibrated based upon the outputs of Ecosim and Ecospace. Models are fitted to time series reference data with a long a reference period, with as many different disturbance patterns, as it is possible to assemble. Developers recommend an iterative, stepwise procedure for model fitting.

The modelling approach is thoroughly documented in peer-reviewed scientific literature. Key papers include: Ecopath - 1992, Ecological modelling 61: 169-185; Ecosim - 1997, Fish Biol. Fisheries 7: 139-172; Ecosim II - 2000, Ecosystems 3: 70-83; Ecospace - 1999, Ecosystems, 2: 539-554; EwE overview - 2000, ICES J. Of Marine Science; EwE - 2000, 'EwE: A User's Guide'; among others. The software has more than 2000 registered users representing 120 countries, more than a hundred ecosystem models applying the software have been published, see www.ecopath.org.

Key assumptions through the EwE models relate to incorrect biomass interpretations, misinterpretation of trend data (e.g. hyperstability of catch per effort data), and failure to account for persistent effects such as environmental regime changes or confounding of these effects with the effects of fishing. EwE can produce misleading predictions about even the direction of impacts of policy proposals. However, erroneous predictions usually result from bad estimates or errors of omission for a few key parameters, rather than 'diffuse' effects of uncertainties in all input information. Particular problems have been recorded with: 1) Incorrect assessments of predation impacts for prey that are rare in predator diets; 2) Trophic mediation effects (indirect trophic effects); 3) Underestimates of predation vulnerabilities; 4) Non-additivity in predation rates due to shared foraging areas; and 5) Temporal variation in species-specific habitat factors. Overall, dealing with sensitivity seems to be based upon the user re-running the model several times using different parameters to test the level of sensitivity.

When EwE is used for policy comparisons, incorrect comparisons (EwE leading the user to favor a wrong policy option) are due to errors in the specific input data to which a particular policy comparison is sensitive. Therefore, EwE can give correct answers for some policy comparisons but some wildly incorrect ones for others based upon the inputs used. Lack of historical data and difficulty in measuring some ecosystem components and processes (these are general uncertainties, not just with this model). Semi-Bayesian sampling routine is employed to explicitly consider the numerical uncertainty associated with the inputs. Ecopath has a number of routines that encourage users to explore the effects of uncertainty in input information on the mass balance estimates. In particular, the 'Ecoranger' routine allows users to calculate probability distributions for the estimates when they specify probability distributions for the input data components. Similarly, Ecosim has a graphical interface that encourages policy 'gaming' and sensitivity testing. Confidence intervals can be assigned to all input parameters and can be estimated for output parameters using Ecoranger. Overall, dealing with uncertainty seems to be based upon the user re-running the model several times using different parameters to test the level of uncertainty.

The models in this series are linked in a hierarchical manner (i.e. outputs of Ecopath provide the parameters for Ecosim, whilst the outputs of Ecosim are used to validate Ecopath. Outputs of EwE feed into Ecospace, and these outputs feed into Ecoval. In Ecosim, the 'formal estimation' produced by the ecosystem model feeds into a 'judgmental evaluation' by the user leading to adjustment of inputs and parameters, which subsequently feeds back into the 'formal estimation'. This is an integral part of the process of dealing with uncertainties and sensitivities of the model.

All methods are fully and transparently published and discussed in the scientific literature. All data sets, user guide, and the model are freely available to download online at: http://www.ecopath.org. All assumptions and uncertainties are well documented in the scientific literature and information documents available from http://www.ecopath.org. guide well described in the which can be found particularly user at: http://www.ecopath.org/modules/Support/Helpfile/EweUserGuide51.pdf

EwE has also been soft linked with a number of other models to develop the Millennium Ecosystem Assessment scenarios and the GEO-3 and -4 projections. In the MEA, these models were IMPACT, WaterGAP, IMAGE, a Freshwater Biodiversity Model, a Terrestrial Biodiversity Model, and AIM, and in the GEO analyses the models were International Futures, IMAGE, IMPACT, WaterGAP, GLOBIO, LandSHIFT, CLUE-S, and AIM.

The EcoOcean model is an ecosystem model (based on the Ecopath with Ecosim approach) that was used to explore the GEO-4 scenarios. The model simulates changes in ecosystem and fisheries based on fishing effort levels estimated by a 'policy optimization' routine. This routine varies fishing effort to maximize overall utilities (ecology, economic and employment) based on weighting factors developed under the GEO-4 scenarios.

4.3.4 Adaptability

Continuing on the evaluation of the integrated assessment models as summarised in Section 3.3, and the conclusions that none of these models discussed is complete or perfect to the demands derived from TEEB objectives, the other models in the inventory of Task 1 have been looked at to find out whether they can contribute to the development of a toolbox for TEEB. Indicators for this could be the range of the themes covered by the sectoral, thematic or regional models. First, the models with Biodiversity as their core variable are discussed.

Biodiversity

Given the importance of Biodiversity in the project, special attention has been given to models addressing biodiversity. Table 4.3 shows the scores of the three biodiversity models that were reviewed.

	Ecosystem S	ervice Provis	ion		Biodiversity	Economic Value of Output	Scale of Output	application in assessment
Model name	Provisioning services	Supporting services	Cultural services	Regulating services				
GLOBIO	FROM link with IMAGE:	FROM link with IMAGE:		FROM link with IMAGE:	mean species abundance (MSA)		global, (0.5° by 0.5° for climatic data, 1km by 1km for land use data)	OECD, GBO
BII					biodiversity intactness index		global, scale of aggregation: 104 to 106 km2	
SAR					number of species; Vegetation composition/ species distribution		global, for biomes, ecoregions, not spatially explicit	

Table 4.3 Biodiversity models

GLOBIO (full documentation in Alkemade et al, 2009)

The heart of the GLOBIO3 model is a set of dose-response relationships between the mean abundance of original species (the MSA indicator) and five pressure factors. The relationships are based on model exercises (climate change effects), on data from extensive literature reviews for pressure factors (for land-use change, nitrogen deposition and infrastructure), and on review studies on fragmentation. The data found in the literature was interpreted and figures were recalculated to fit into comparable relationships and indicators. This procedure is sensitive to errors and, to some extent, misinterpretation, but allows comparison among effects of different pressure factors. The unavoidable differences in the quality of datasets used create uncertainty in the estimated dose response relationships. The overall result of GLOBIO3 shows similar patterns as earlier global studies (Sala *et al.*, 2000; Wackernagel *et al.*, 2002; MA, 2005).

The study used 130, 50 and 300 studies for land-use, nitrogen and infrastructure effects, respectively. The majority of the land-use studies are from tropical biomes, while the studies on nitrogen and infrastructure mostly build on temperate and boreal data. Especially low impact pressures, like grazing in grassland ecosystems, selective logging or nitrogen deposition close to critical load values have high uncertainty. For secondary vegetation a mean value is used, but a time dependent component (reflecting natural recovery) needs to be incorporated. The climate dose-response relationship cannot be based on data that measure the climate effects directly, as most effects will show up in future. Therefore, the relationships are based on model exercises that estimate climate envelopes for species (Bakkenes *et al.*, 2002) or vegetation types (Leemans & Eickhout, 2003). Meta analyses (Parmesan & Yohe, 2003; Walther *et al.*2002) and other model studies (Thomas *et al.*, 2004) confirm the main tendencies of the GLOBIO3 exercises, but the modelled effects are relatively low. Thus the effect of climate change might be underestimated in this study. For fragmentation, we used five review studies on minimum area requirement (MAR) of animal species (data on 156 mammal and 76 bird species).

BII (Biodiversity Intactness Index; from Scholes & Biggs, 2005)

The BII is an indicator of the "average abundance of a large and diverse set of organisms in a given geographical area, relative to their reference populations". In this way it is very similar to the approach used in the Mean Species Abundance Indicator in GLOBIO (see also 4.3.5). Scholes and Biggs (2005) recommend calculating the BII across all species within the broad taxonomic groups that are reasonably well described, which includes plants and vertebrates, and excludes invertebrates and microbes, which are diverse but poorly documented. They exclude alien species.

The recommended reference population for large parts of the world is the landscape before alteration by modern industrial society. The BII can in principle be calculated exactly by 'bottom-up' aggregation of population data for individual species. However, this will not be a practical option for the next several decades. The proposed strategy is therefore to initially calculate the BII 'topdown'. Scholes and Biggs estimate the impacts of a set of land use activities on the population sizes of groups of ecologically similar species ('functional types'). The chosen land use activities range from complete protection to extreme transformation, such as urbanization. All activities are expressed on the basis of the area affected. The index is aggregated by weighting by the area subject to each activity and the number of species occurring in the particular area. The BII is an aggregate index, intended to provide an intuitive, high-level synthetic overview for the public and policy makers. It can be disaggregated in several ways to meet the information needs of particular users: by ecosystem or political units, taxonomic group, functional type, or land use activity (Scholes & Biggs, 2005)

SAR (Species Area Relationship; from Van Vuuren, Sala & Pereira, 2006)

The SAR is an empirical relationship describing how the number of species relates to area (Rosenzweig, 1995) and is defined as $S = c A^z$, where S is the number of species, A the habitat area, c is the species density and z the slope of the relationship. The SAR has been used earlier to estimate biodiversity loss when native habitat is reduced by deforestation (e.g., May *et al.* 1995, Pimm *et al.* 1995, Brook, *et al.* 2003) or climate change (Thomas *et al.* 2004).

In contrast to the loss of biodiversity at the global scale, local changes in species abundance and local extinctions are directly proportional to losses in habitat. Species and the ecosystem services that those species provided often disappear immediately after a piece of native habitat is converted into an agricultural or urban patch. Moreover, another important difference between local and global losses of biodiversity is the reversibility of the phenomenon. Local losses could be reversed as a result of abandonment or active conservation practices. Populations can invade from adjacent patches naturally or assisted by human intervention. Ecosystem services derived from local diversity can therefore increase or decrease as a result of gains and losses of habitat.

4.3.5 Conclusions

The GLOBIO model has a track record in global assessments (GBO2, GEO4, OECD2030, COPI). It includes a well developed link to the IMAGE output data which act as drivers of biodiversity loss. The biodiversity indicator is the mean species abundance, which is similar to the Biodiversity Inatctness Index. It is relatively simple in mathematical structure, based on peer reviewed literature and can be adapted easily to include other stress factors or reflect the effect of new environmental policies. The GLOBIO model includes many different anthropogenic pressure factors affecting biodiversity. Additionally a strong advantage of the GLOBIO model is that it can be directly linked to the IMAGE model that provides information on ecosystem services. The BII and SAR models (used in the MA) could contribute as well in TEEB context.

Biogeochemical and hydrological models

Next to extension of the Integrated Assessment Models with Biodiversity models, there are a number of extensions possible to improve the biogeochemistry aspects (Tables 4.4). The category of biogeochemical models in the Task 1 inventory mainly contains sectoral (or some multi-sectoral) models. In this category, IBIS, LPJmL and SAVANNA scored best. The SAVANNA model is a model that can only be applied for the savannah biome. For this biome it will be possible to get very detailed results, but for other processes and biomes the results will probably be less accurate than the more general vegetation models like IBIS and LPJmL. Although it only includes provisioning services (agricultural food productions), IMPACT-WATER is the only biogeochemical model that includes a feedback from ecosystem services to socio-economic development, through including effect on water availability/ water scarcity..

IBIS

The model is restricted to terrestrial ecosystems. It includes vegetation with energy, water and carbon exchange and nutrient cycling.

LPJmL

The LPJmL model is a general dynamic global vegetation model that also includes agricultural land and managed forests. Output of the model is vegetation cover (as fraction of different plant functional types per grid cell), CO2 exchange, seasonal water balance, NPP and crop production. The plant functional types can be classified based on the needs of the user. However, if a user wants to use or introduce new functional types, the model needs to be parameterised or calibrated for these new groups. It will probably take a long time to do this right. Currently the LPJmL model is being integrated into the IMAGE modelling framework to provide improved modelling of vegetation in IMAGE. The model is expected to be available in the second half of 2009, further adding to the applicability of IMAGE. No links to other models are known, but output of LPJmL could probably relatively easily be included in the meta-modelling approaches like MIMES/GUMBO and the assessment tools like ATEAM and InVEST.

Model name	Ecosystem S	ervice Provisio	on		Biodiversity	Economic Value of Output	Scale of Output	Application in assessment
	Provisioning services	Supporting services	Cultural services	Regulating services				
IBIS	water runoff	NPP, SOC, N balance		carbon balance, water regulation	Vegetation composition (functional types)		0.5 - 4°	
LPJmL	runoff volumes, crop production	annual NPP		CO2 exchange, water balance	vegetation cover (fraction of different plant functional types per grid cell); Vegetation composition		global, 0.5° grid cells	
SAVANA	livestock production, grass and timber production, water supply (runoff, deep drainage)	NPP, nutrient cycling		water balance	Species distribution and abundance (plants + animals); community composition		regional, resolution depending on input data and studied ecosystem	
WaterGAP	water supply						global, country, river basin, grid cells 0.5° by 0.5°	OECD, GEO, MA, in combination with IMAGE, IMPACT, EcoSim and AIM

Table 4.4 Biogeochemical and hydrological models

Of the hydrological models, only the WaterGAP model has enough promising features to be relevant for TEEB. It has been widely used in other assessments.

4.3.6 Regional models / assessment tools

The ATEAM and InVEST modelling tools score best in the category of regional models/assessment tools (Table 4.5). They include all four ecosystem services and biodiversity and are available for external researchers. The ATEAM tool uses as input the output from some of the models considered before, like the LPJ and IMAGE models. The CLUE model is a specialised land use dynamic model with its major application in Europe but with a great number of country level applications around the world

Model name	Ecosystem S	ervice Provision	1		Bio- diversity	Economic Value of Output	Scale of Output	application in assessment
	Provisioning services	Supporting services	Cultural services	Regulating services				
ATEAM	food production, wood production, energy production, water supply	soil fertility maintenance (soil organic carbon), pollination	recreation, sense of place, beauty	carbon storage (LPJ model), drought and flood prevention, water quality	statistical niche modelling		Europe 15 + Norway and Switzerland , 10' by 10' grid	
InVEST	drinking water, irrigation water, food production, timber production, non-timber forest products	pollination (contribution to yield)	recreation and tourism, cultural and aethetic values, real estate prices as indicator of valuation of nature	flood mitigation, carbon sequestratio n, erosion control, water quality	species richness (habitat requiremen ts of 37 terrestrial vertebrate species, dispersal ability)		regional, resolution flexible; case study: Willamette Basin, Oregon, USA (30 m x 30 m grid, for results: 500 ha units)	
CLUE	None (but land used for agriculture, grazing, forestry)				Land cover diversity explicit		Europe (EU-27), also case studies between 30m and 221m	EU- RURALIS

Table 4.5 Regional models

Also the ATEAM and InVEST assessment tools include cultural services, mainly related to recreation and aesthetic and cultural values of landscapes. The regional assessment tools that were evaluated, i.e. ATEAM and InVEST, follow an interesting approach that could provide the necessary framework to combine model outputs and assess impacts on value of ecosystem goods and services. These models build on existing models and use their output, while increasing feedbacks and interlinkages between components. Disadvantage is that they are relatively data demanding.

4.3.7 Economics in the assessment models

TEEB ambitions point at a need for a strong economic perspective connected to Global assessment models. In the models reviewed, economic variables act as drivers of land use and other environmental changes. Except for GUMBO/MIMES none of the models has developed a link between the physical changes and economic values. This is currently a huge gap in most of the models and consequently in the global assessments, which the COPI I exercise has addressed in an exploratory fashion. Some participants of the Workshop (see Task 4) were in favour of assessing economic implications which go beyond GDP, for instance employment and tax revenues, in order to assess the full social impact of the global loss of biodiversity. None of the models reviewed address these economic aspects. The Global Ocean Economics Project was mentioned to take value chains following from fish landings into account, while more limited work has also been done on trade impacts of biofuels. It was also remarked that the idea of (economic) multipliers can be questioned in the context of global assessments, as there are still too many uncertainties which need to be overcome first.

4.3.8 Indicators of change in biodiversity and ecosystem services

Biodiversity indicators

Biodiversity as defined by the Convention on Biological Diversity encompasses the diversity of genes, species and ecosystems. Given this complexity, biodiversity dynamics can only be described by a set of complementary indices. Several focal areas and indicators have been identified and accepted for measuring the progress towards the 2010 CBD target 'to achieve by 2010 a significant reduction of the current rate of biodiversity loss at the global, regional and national level as a contribution to poverty alleviation and to the benefit of all life on Earth'.

Well known indicators for the status and trends in terrestrial biodiversity are the Red List Index (IUCN), the Living planet index (WWF and UNEP-WCMC), the coverage of Protected Areas (UNEP-WCMC) and the Ecological Footprint (Global Footprint Network and WWF). Each of the indicators has strengths and weaknesses. In decision VII/30 the Conference of the Parties of the CBD in 2004 adopted a framework to assess and communicate progress towards the 2010 target at the global scale. The framework includes seven focal areas, each of which encompasses a number of indicators for assessing progress towards, and communicating, the 2010 target at the global level. In total, 27 indicators were indentified by the Conference of the Parties. These indicators are in the process of being developed at the global scale by a wide range of organizations, including UN agencies, research institutes and universities, and non-governmental organisations, brought together by the ²⁰¹⁰ Biodiversity Indicators Partnership project. The EEA is developing a set of indicators derived from the CBD set, to monitor progress in Europe (EEA, 2007).

In selecting biodiversity indicators a multitude of methodological questions need to be addressed. The process of Streamlining European Biodiversity Indicators (SEBI2010) led by the European Environment Agency illustrates this well. This refers to question such as: how to define 'undisturbed', how to deal with biological, ecological and environmental differences in the 'dose-response curves' for different species, whether to exclude or include cases where the populations do well in disturbed habitats, how to deal with both biological variance and error variance, as well as with the fact that non-linear responses may be both common and significant. Trivial but essential is of course whether there are data to quantify the indicators selected on theoretical arguments. Again the European situation is illustrative: many countries have some sort of monitoring program, but there is no consistency in selection of taxa, methodologies etc. (Dominique Richard of ETC-Biodiversity at the Workshop).

The Mean Species Abundance (MSA) indicator

In the Cost Of Policy Inaction (COPI) study (Braat & Ten Brink, 2008), a model framework and biodiversity indicator were used to assess terrestrial biodiversity dynamics which together are able to reflect the impacts of the most important direct and indirect drivers and create a quantitative link between changes in these drivers and associated pressures, biodiversity and ecosystem services and economic value. The process of biodiversity loss is characterised in the COPI study by the decrease in abundance of many original species and the increase in abundance of a few other -opportunistic- species, as a result of human activities. Until recently, it was difficult to measure the process of biodiversity loss. "Species richness" appeared to be an insufficient indicator. It is hard to monitor the number of species in an area, but more important it may sometimes increase as original species are gradually replaced by
new human-favoured species. Consequently the Convention on Biological Diversity (VII/30) has chosen a limited set of indicators to track this degradation process, including the "change in abundance of selected species".

As any indicator, the MSA indicator has strong and weak points depending on the requirements of the user and the real world processes to be represented. MSA has the advantage that it measures the key process of homogenisation, is universally applicable, and can be modelled with relative ease. MSA is also applicable at different scales from national to global. Biodiversity loss is calculated in terms of the mean species abundance of the original species compared to the natural or low-impacted state. This natural or low-impacted state baseline is used here as a means of comparing different model outputs, rather than as an absolute measure of biodiversity (Box 4.1). If the indicator is 100%, the biodiversity is similar to the natural or low-impacted state. If the indicator is 50%, the average abundance of the original species is 50% of the natural or low-impacted state and so on. A strength of the MSA indicator is that it is possible to link scenarios on economic developments, climate and land-use change (indirect and direct drivers) to dose-response relationships between environmental pressures and mean species abundance. Thus, scenarios and option effects can be assessed in an integrated way for all global terrestrial biomes.

Because it is a measure of the average population response, the same MSA value can result from very different situations. For example, if the MSA indicator is 50%, half of the original species might be extinct, with the remaining half at original abundance levels. The MSA cannot distinguish between abundance and extinction. The mean species abundance at global and regional levels is the weighted average of the underlying biome values, in which each square kilometre of every biome is equally weighted (B. ten Brink, 2000).).

In this review it is useful to identify what indicators can or cannot produce in terms of biodiversity information. For extensive reviews of a wide array of biodiversity indicators see EEA (2007). For the MSA it can be summarised as:

- It cannot distinguish different levels of species richness either before or after 'disturbance'.
- It cannot deal with changing species composition (extinction, invasion etc.).
- It does not differentiate between different levels of biomass.
- It seems to be largely a measure of driver intensity.

A disputable choice was made to apply equal weights for the different biomes (non-weighted MSA), from polar to tropical forests. Equal weights put the burden of mitigating biodiversity loss also equally over biomes. So, in aggregate MSA values, every square kilometre of each biome contributes equally to the regional or global MSA. If the biomes were weighted on their species richness (weighted MSA), converting a tropical rain forest would probably have more impact than converting grasslands in the same region. This indicates that human impact on species richness is higher in species-rich tropical and temperate zones than in species-poor boreal and polar regions.

The MSA shows the value of the original species abundance that can occur under a natural condition/baseline (climate and soil) as 100%. The consequence of this choice is that all change due to human interference, except restoration and mitigation, leads to lower indicator values. Not all indicators behave this way. For instance, species richness can increase due to human interference in specific situations (e.g. invasive alien species introductions). This only holds for local situation, at biome level species richness will only exceptionally increase and on global level never!

BOX 4.1 The need for a baseline (from sCBD & MNP, 2007)

Baselines are starting points for measuring change from a certain state or date. They are common practice for such items as medical care, economic development and climate change. The MSA indicator uses undisturbed, natural or original ecosystems as baseline. Since there is no unambiguous natural baseline point in history, and all ecosystems are also transitory by nature, a baseline must be established at an arbitrary but practical point in time. Because it makes the most sense to show the biodiversity change when human influence was accelerating rapidly, the *first CBD Liaison Group on Biodiversity Indicators* recommends "a postulated baseline, set in pre-industrial times" or a "low-impact baseline" as being the most appropriate. The baseline allows aggregation to a high level, makes figures within and between countries comparable, is a fair and common denominator for all countries, being in different stages of economic development, and is relevant for all habitat types. It has to be stressed that the baseline is not the targeted state. Policy-makers choose their ecological targets somewhere on the axis between 0 and 100%, depending on the political balance between social, economic and ecological interests.

Other biodiversity indicators

An often used biodiversity indicator is "species richness". This indicator would probably be less sensitive to the homogenisation process. It can be expected that in some regions species richness on local levels will be stable or will increase during the coming decades, as a result of the introduction of many new species due to human activities. New species will become more and more abundant, partly replacing original species without necessarily leading to complete extinction. Consequently the species richness will increase at the local, national and regional level. The homogenization process was observed in 100 years of industrialization and demographic growth in the Netherlands (van Veen et al., 2008.). However, one could use "original species richness", like MSA does! Another often used indicator is the "number of threatened and extinct species". As the status of threatened species depends on both the threat and sensitivity of species, the pattern of change cannot easily be predicted. In general, an indicator based on threatened species will show declines when pressures on ecosystems increase due to the limited distribution areas. We expect similar changes as mean species abundance (MSA) but less profound (lags behind). This is basically the IUCN Red List Index, and there are more than one time point for several taxonomic groups. The difficulty is that trends in different groups are measured over different time spans. Change in the "number and abundance of endemic species" is expected to behave similar as change in threatened species. Both species groups have generally small distribution areas (by definition), making them more vulnerable to habitat loss and the process of homogenisation. Biomass density is sometimes mentioned because of its role in delivering very important services, especially carbon storage and water provisioning. Population Viability, which refers to physical dispersion, mean range size and separation, and its resulting species risk, hence economic risk and costs, is also a candidate. IUCN has mean species range size globally for a number of groups, but not trends.

Indicators for ecosystem services

Braat & Ten Brink (2008) have introduced a simplified set of relationships between the levels of ecosystem services and the degree of loss of biodiversity compared to a (theoretical) 100% reference situation. (see figure 4.1). The X-axis shows a series of land use types with corresponding MSA values, decreasing from left to right. The following reasoning underlies the shape of the curves.

Provisioning (P): By definition, there is no provisioning service in a pristine ecosystem. With increasing intensity of use and conversion of the structure, species composition and thus

functioning of the original natural area, the Mean Species Abundance (a measure of biodiversity and ecosystem functioning) decreases (from 1 to 0) and the benefit flow (EV; ecosystem service value) increases. Adding labor, fertilizer, irrigation, pest control etc. will raise the gross benefits, and to some limit the net benefits. At some point along the X-axis, e.g. intensive agriculture, the remaining ecosystem will be reduced to a substrate for production of biomass only. The final state is defined as approaching zero value, having been built on and covered by concrete or asphalt.

Figure 4.1 Generalised functional relationships between ecosystem service level (Y-axis) and degree of land use intensity (corresponding to decreasing MSA values; X-axis)

Regulating (R): Most of the information from case studies on regulating services (climate change buffering by carbon sequestration, flood regulation) points at a complex relationship between the "intact" ecosystem and the service levels. As systems are converted, they lose structure, functions and their regulating potential, so their actual performance drops more or less proportionally with the decrease of MSA along the range of land use types on the X-axis. **Cultural – recreation (Cr):** Recreational benefits are classified as part of the Cultural services in the MA. A crucial feature in the valuation of the recreational services of ecosystems is accessibility. The graph therefore displays an increase from low value at inaccessible pristine systems to high values in accessible light use systems, with still a relatively high appreciated complexity and biodiversity, and a subsequent drop in value towards the more degraded systems. There are of course other forms of recreational values, based on for example the openness of landscapes, the cultural-historical value of buildings, or artificial amenities, which are not addressed in this approach.

Cultural – **Information** (Ci): Most of the other cultural ecosystem services and their values are a function of the information content which is considered to decrease with the degree of conversion.

A vertical summation of the ecosystem service levels, and implicitly their economic and social values, per land use type points at the trade-offs included in land use conversions.

The challenge in future ecosystem services studies could well be to specify the types of services and quantify the X- and Y-axes of Figure 4.1, as illustrated in Figure 4.2, and thus give substance to the generalised conceptual model. In Figure 4.2 for the cluster of Provisioning services a few possible different graphs have been drawn, and it is suggested that such graphs may result from specifying the relationships for different services, different crops and in different biomes. Obviously, in figure 4.2 the curves are still generalised curves with an illustrative purpose only.

Figure 4.2 Generalised functional relationships between ecosystem service level (Y-axis) and degree of land use intensity (corresponding to decreasing MSA values; X-axis). The graph shows that the exact curves might differ for different groups of provisioning services (different services, crops, and biomes).

An ongoing effort to develop a systematic set of indicators for ecosystem services is the work at the World Resources Institute (C. Layke, 2009, in prep.: Measuring Nature's Benefits: a status report and action agenda for improving Ecosystem Service Indicators). In this project the Millennium Ecosystem Assessment is systematically screened for the use of indicators of services, which are then screened and evaluated for the "ability to convey information" and "data availability". Other efforts which show similar struggles for pinpointing the most appropriate indicators are the UK Countryside Survey (CEH, 2007), Van Veen *et al* (2008) reporting on the efforts of the Netherlands in halting the loss of biodiversity (and ecosystem services) and Dumortier *et al.* (2008), doing the same for the Belgian region Flanders.

4.4 Conclusions

The conclusions have been grouped to form a check against the Task 3 objectives:

Determine how: changes in key assumptions affect the results of different models with a focus on either the impact on ecosystem services or on the economy more generally Although the study has not empirically tested the effect of changes in key assumptions, there are a few findings from the survey of the models, assessments and background literature, which shed some light on this:

- Changes in the numerical values of drivers (development of population, economy, land use or energy use) applied as different scenarios in the assessments have crucial influences on biodiversity and features of land use such as agricultural production, carbon sequestration and water availability, which can be seen as indicators of ecosystem services. In addition, the framing and design of assessments as a whole are at least as important factors in terms of their influence on the uncertainty and potential bias of results.
- Effects on the economy are not modelled, except by the GUMBO/MIMES models, but they have not been applied or tested in global assessments.
- The documentation of most of the models in the inventory was not of sufficient detail to determine to what extent changes in assumptions about internal model dynamics would quantitatively affect outcomes. Such an analysis is currently being done for the translation of land use and biodiversity changes produced with the IMAGE-GLOBIO model to economic values in the so called COPI 2 study (P. ten Brink *et al.*, 2009; in prep.).

Determine the extent to which the scenario-model studies could be used for making largescale assessments of the impacts of the loss of biodiversity and ecosystem services worldwide

- The various global scenario-model studies present different futures of biodiversity, in relation to different scenarios (packages of driver developments and policies). A considerable share of the scenario-studies in the Task 1 inventory, e.g. MA, IPCC, GEO4 and OECD2030, have used the IMAGE model as major land use and environmental change model, in some cases extende with the GLOBIO model (in the MA with the SAR model) to produce assessments of biodiversity change.
- In the evaluation, the features of the models have been the focus; the application of the models in assessments has been used as selection and evaluation criterion. A comparative analysis of the features of the published scenarios is available in Kok *et al.*, 2009. The conclusion is: The exploratory scenarios (e.g. GEO4) are relevant to "create and illustrate the virtual future space in which conflicts between population and economic growth versus ecosystems and sustainable use will take place". The baseline-scenario approach (e.g. OECD EO-2030) is more useful for developing insight in economic consequences of alternative policy options to deal with the looming conflicts. Very few are available which deal with biodiversity and ecosystems explicitly. The analysis done with the IMAGE-GLOBIO toolbox for GBO2 (2006) is a rare example, at least at the global scale (see sCBD & MNP, 2007).
- Changes in terms of ecosystem services have been described under a great variety of indicators and mechanisms. They are as variable across the studies as the definitions of ecosystem services. A systematic classification of ecosystem service indicators is being developed now (by WRI) but as for the definition and selection of biodiversity indicators, a broad discussion about appropriateness, representativeness and make-ability with respect to data, is looming.

Determine how such models could be adapted to better assess policies (including coupling of biophysical models with economic models to assess the wider effects on the economy)."

• The inventory of models, scenarios and assessments reported in the Task 1 report contains a wealth of structured information on the features of the models. When a closer look is

taken, and a strict reference is chosen of short term, direct usability in TEEB project, e.g. for TEEB deliverables D0 and D1, none of the individual tools is sufficient, but many offer useful elements.

- The integrated assessment models reviewed and selected as most promising for TEEB ambitions (IMAGE for Terrestrial and EwE for Marine) are developed in such a way that they can relatively easily be adapted and include submodels or extensions to accommodate TEEB specific questions regarding ecosystems, ecosystem services and economic indicators. A number of theme, sector or region specific models exist which can be used to achieve this.
- The dynamic feedback from changes in the physical domain (ecosystems, biodiversity and services) to the economic and social domain have been proposed by the GUMBO modellers. This needs to be explored further.
- Although not explicit part of the ToR, the MSA indicator has been discussed at some length in this report, specifically on request of the project leader, in view of the debate in TEEB project. Overall, it was agreed in the Workshop discussion that the best means of modelling global biodiversity impacts at the moment is probably through the GLOBIO model and MSA indicator, despite their limitations. Thus the MSA indicator can be regarded as a suitable metric for use in TEEB. Nevertheless, its use in the COPI biodiversity study to refine per hectare values of ecosystems services is a critical issue and needs to be re-examined. The approach needs to be validated and if appropriate the MSA / ecosystem functional relationships adjusted accordingly. It was also pointed out that some ecosystem services may be better modelled directly, as they are not affected by biodiversity as measured through the MSA. It was suggested that consideration should be given to assessing biodiversity impacts according to the Human Appropriation of Net Primary Production (HANPP) indicator. HANPP measures to what extent land conversion and biomass harvest alter the availability of Net Primary Production (biomass) in ecosystems. This is considered by some to closely reflect pressures on biodiversity. If linked to GLOBIO, it could be used to compare results obtained from the MSA indicator.

5 WORKSHOP

5.1 Description of Task 4 from the ToR

"The contractor should hold a small on-day expert workshop, expected to be attended by up to 30 participants, to discuss further:

- *the modelling approaches currently available*
- how these can be used to model policies
- *how models and their respective scenarios could be further developed.*

It is expected that the interim report comprising the results of Task 1 and work related to Tasks 2 and 3 completed at this time will be addressed and discussed during the workshop."

5.2 Background and aims of the workshop

Recent studies such as The Cost of Policy Inaction on Biodiversity (COPI) and the wider review on The Economics of Ecosystems and Biodiversity (TEEB) have revealed that biodiversity loss has widespread and substantial economic costs and impacts on human wellbeing. Such studies have taken into account a number of recent global and regional assessments that project future changes in drivers of ecosystem change and biodiversity loss. In order to support the second phase of TEEB, the European Commission (DG Environment) has initiated a study to examine the use of scenarios, models, and other quantitative tools for exploring future trends in biodiversity and their impacts on ecosystem services.

The workshop aimed to discuss the interim results of Task 1 and Task 3 of the project report. While Task 1 focuses on identification and overview of available models of biodiversity and ecosystem services and key assumptions, the objective of Task 3 is to assess how changes in key assumptions affect the results of different models and how such models could be adapted to better assess policies.

In particular, the workshop participants were invited to discuss:

- 1. the modelling approaches currently available;
- 2. how these can be used to assess policies; and
- 3. how current models and scenarios could be further developed.

5.3 Proceedings

5.3.1 Opening and introduction: What this study aims to do?

Robin Miège (DG Environment) opened the workshop and welcomed the participants. He explained that the current project takes place in the context of the wider study on "The Economics of Ecosystems and Biodiversity" (TEEB) and that its purpose is to pick up the recommendations and suggestions from the TEEB expert workshop, which took place in March 2008 in Brussels. The central recommendations from that workshop were:

- to run scenarios on sustainable ecosystem use;
- to work more on the absence of feedback loops between loss of biodiversity / ecosystems and economic growth to enhance the credibility of results;

- to pay attention to quantifying the trade-offs between provisioning and regulating services in models;
- to produce an inventory of model runs for all major ecosystems and to illustrate the loss of ecosystem services expected under different scenarios; and
- to develop maps of best conservation opportunities available.

Robin Miège outlined that the **aim of this workshop** was to discuss the interim project report, which was produced by the project team, to review the assessed models, and to discuss a set of suitable models and scenarios for TEEB, but also to set the future research agenda. Eventually, the results shall feed into the TEEB phase II reports and facilitate the discussions on the post-2010 biodiversity target.

5.3.2 The role of the scenarios and models project in the TEEB context

<u>Patrick ten Brink</u> (IEEP) summarised the political background that led to the TEEB project and outlined how the current project will feed into TEEB. With regard to the timeframe, he mentioned **three important milestones** that should be taken into account in the discussion:

- September 2009, when the results from the projects "Further Developing Assumptions on Monetary Valuation of Biodiversity Cost Of Policy Inaction (COPI)" and "Scenarios and models for exploring future trends of biodiversity and ecosystem services changes" should feed into the TEEB report for policy-makers;
- October 2010, by which some further runs of models and scenarios should be completed and fed into a TEEB update to be presented at the CBD COP-10 in Nagoya; and
- 2015, which is the target date for achieving the Millennium Development Goals (MDG), and by when further modelling could be used to support discussions on future MDGs.

Patrick concluded his presentation by outlining the following main questions for consideration during the afternoon session

- What do you think can and should be done in terms of modelling and scenarios for TEEB?
- Which models would be useful to TEEB and what improvements could be made to existing models?
- What scenarios/sensitivities (covering what issues?)
- What biomes/ecosystems/geographic scales?
- What is feasible in the timescale?
- What costs/inputs would be required?
- Ideal vision vs. Pragmatic reality what can be done for Nagoya and what to 2015 (MDGs) and what beyond?

Discussion

The subsequent discussion focussed on the questions which models will be used in the wider TEEB project to assess the loss of biodiversity, and whether these models will continue to be land-based. Patrick stated that in the COPI I project, the Image-GLOBIO model was used, as it produces the Mean Species Abundance (MSA) indicator. Limitations of the analysis were that the exercise did not take into account marine ecosystems and did not make use of a range of scenarios or sensitivities. He emphasised that, in the TEEB phase II, there is a need for a **more developed approach**, which also adequately includes marine ecosystems. Ideally, a range of scenarios shall be run to take into account various assumptions and predictions.

After the first introductory presentations, the following two sessions discussed the main results of Task 1 (Review of available models and scenarios) and Task 3 (Assessment of key assumptions in the available quantitative tools).

5.3.3 Session 1: Review of available models and scenarios: "State of the Art"

Tom Kram (Netherlands Environmental Assessment Agency) presented the key findings from Task 1 of the project, which aims to provide an overview of existing models and scenarios that have been built and applied to model biodiversity and ecosystem services, often is the context of comprehensive assessment studies. He summarised that quite a lot of material is available that could be used for a qualitative assessment. While provisioning and regulating services were to a reasonable extent covered by the reviewed models, **regulating and cultural services were covered to a lesser extent**. It appeared that, in most models, **land use is the central link** between drivers of biodiversity loss and the decline in associated ecosystem services. As no model was identified which covers all aspects of biodiversity loss, Tom recommended **the use of a combination of models** for TEEB phase II.

Discussion

The subsequent discussion focussed on several issues regarding the capabilities of the models reviewed. It was remarked that **most existing models focus on provisioning ecosystem services**, whereas all other ecosystem services categories are barely covered (with the exception of carbon sequestration n). The fact that the impact of **invasive alien species** on the provision of ecosystem services has so far not been taken into account was also raised. The participants agreed, however, that a global assessment of biodiversity loss will always be subject to compromise, as the whole range of available ecosystem services (especially at the local level) **cannot be covered by a single model**.

The issue of **how to avoid double counting** of ecosystem benefits from integrated assessment models was discussed and it was acknowledged that this is a complex and difficult task. An assessment of the problem cannot be made without detailed knowledge about the respective models. Within the scope of the TEEB project, such a task was regarded as not feasible. Instead, it was suggested that the **focus should be on assessing the most important ecosystem services**. It was also noted that integrated assessment models tend to incorporate uncertainties in their complex structure and multitude of variables, thus users should be aware of their possible limitations. One way of dealing with this could be to use minimally realistic models, and considering the purpose of the model. Another way could be the use of expert opinions on the impact on biomes under certain local conditions.

One alternative option would be to **identify different groups of models**, of which several could be used for the modelling exercise within TEEB phase II. In this way, the results of different modelling approaches could be compared to each other. An alternative option is to join together simpler and more specialised models in which the limitations and assumptions of each model are better known and there is greater scope to take account of local differences. This was largely discounted as an option in the short term, as coupling models of biodiversity is difficult given the different parameters, priorities, timescales and geographical scales used. However, this approach may be an option in the medium to long-term.

When reporting results, note should be taken of the **IPCC approach** of reflecting their uncertainty.

Part of the challenge for biodiversity models is that fewer data exist than, for example, on climate change, and thus the models are heavily reliant on assumptions. This makes it difficult to make reliable projections of biodiversity change in response to future scenarios, in particular if the diversity of impacts is taken into account. This requires combining the expertise of different research communities and working with often disparate bodies of knowledge. Another problem is that the relationships between biodiversity and the provision of various ecosystems services are often not well understood.

As a practical recommendation, it was suggested to first **establish an inventory of existing ecosystem services** and, in a following step, see which economic benefits these services provide and for which services economic assessments are available. Appearing gaps could be used to show policy-makers and researchers the needs for new primary research (to some extent, this work is available through the COPI I exercise). New primary research is also needed on the **relationships between biodiversity loss and ecosystem service provision**, as explored in the 'Scoping the Science' study conducted in parallel with COPI I during TEEB phase 1. Moreover, when **aggregating the values of different ecosystem services**, attention should be paid to the fact that some of them might originate from the same ecosystem function. In such cases, there is a clear **risk of double counting**, which needs to be avoided by careful, case-specific assessment.

In conclusion, it was agreed that the appropriate choice of models and scenarios depends on the **sort of policy questions** that are supposed to be answered by the exercise. In general, the setup of global assessments should focus on the target audience. Moreover, the assumptions made in terms of scenarios need to be clear. However, it was agreed that too explicit assumptions would, on a global level, confine the number of interested parties, which would weaken the messages from such a global assessment. As, within the scope of TEEB, not all dimensions can be covered, the aim should be to **identify what can be done with the help of existing models in the available time**.

5.3.4 Session 2: Assessment of key assumptions in the available quantitative tools

Leon Braat (Alterra) presented the key findings from Task 3 of the project, which aims to assess how changes in key assumptions affect the results of different models, to evaluate large-scale assessments of the impacts of the loss of biodiversity, and to assess how such models could be adapted to better assess policies. He found that a **limited number of models** and scenarios have so far been be used for large-scale assessments and policy impact assessments; no single model comprehensively assesses all aspects of biodiversity and ecosystem services and links to the economy. Leon considered that, while modelling approaches are quite different in the terrestrial and marine domains, no model was identified that could compete with GLOBIO on a global scale as far as terrestrial ecosystems are concerned.

However, there are new promising models which could not be evaluated as they have not been subject to a peer review process nor been applied within large assessments.

It is **difficult to assess the reliability** of many of the various models, because **independent reviews** of them are **not** generally **available** and only a very limited number out of the 40 models in the survey is being used more frequently. Moreover, detailed examinations of the models are not possible within the scope of this current study. Similarly, it is not possible to assess the models' sensitivity to changes in assumptions because these are not normally

documented. An assessment of driver-assumption sensitivity could only be found for the IMAGE model. The sensitivity of other models to changes in assumptions can only be made by comparing outputs according to different scenarios, but it is difficult to draw conclusions from such comparisons, because many parameters vary among the scenarios.

Discussion

In the subsequent discussion, several modelling approaches were suggested to be considered in the evaluation. The **Atlantis model**, which deals with fisheries was mentioned to be currently at the same state of development as MIMES, was regarded as a useful tool that **could potentially cover the marine dimension within TEEB**. (Unfortunately there is no documentation available in the web for the Atlantis model). It has been applied in two or three places so far and progress has been made to include the economic aspects of biodiversity loss. The **FAO review on marine models** was suggested as a reference. With regard to GUMBO, which is not spatially explicit, it was noted that this is a dynamic model with a long-time projection, while the **focus within TEEB should rather be on evolutionary models** with a timeframe of max. 20 years.

There was some detailed discussion of the **Mean Species Abundance** (**MSA**) metric and its use in the GLOBIO model as well on the use of indicators in general. It was recognised that the **MSA has some significant limitations** (being based on averaged species responses to a number of key drivers of biodiversity loss) and can be misunderstood and misapplied (partly due to its name and lack of easily accessible documentation). Although the MSA indicator has been verified in a study of biodiversity change in the Netherlands, it needs to be tested more widely. However, this is difficult, because the MSA cannot be directly measured in the field.

Overall, it was generally agreed that the best means of modelling global biodiversity impacts at the moment is probably through the GLOBIO model and MSA despite their limitations. Thus the **MSA indicator can be regarded as a potential metric for use in TEEB**, but not necessarily the only one to be used. Its use in the COPI I biodiversity study to refine per hectare values of ecosystems services is a critical issue and needs to be re-examined. The approach needs to be validated and if appropriate the MSA / ecosystem functional relationships adjusted accordingly. It was also pointed out that some ecosystem services may be better modelled in other ways, as they may not be strongly correlated with MSA or biodiversity more broadly.

It was suggested that consideration should be given to assessing biodiversity impacts according to the **Human Appropriation of Net Primary Production (HANPP) indicator**. HANPP measures to what extent land conversion and biomass harvest alter the availability of Net Primary Production (biomass) in ecosystems as compared to the potential natural vegetation as the baseline. This has been shown in some studies to closely reflect pressures on biodiversity, but generalisation would probably be premature. If linked to GLOBIO, it could be used to **compare results obtained from the MSA indicator**, although they are based on the same data inputs (e.g. FAO statistics).

It was acknowledged that there needs to be a **strong economic perspective connected to the modelling exercise**. Leon Braat explained that this is currently a huge gap in most of the models, which the COPI I exercise attempted to address. Some participants were in favour of **assessing economic implications which go beyond GDP**, for instance employment and tax revenues, in order to assess the full social impact of the global loss of biodiversity. This **multiplier effect** has partly been taken into account in studies on the impacts of agrienvironmental schemes on the Dutch agricultural sector. **The Global Ocean Economics Project** takes value chains into account, while more limited work has also been done on trade impacts of biofuels. It was remarked that the idea of multipliers can be questioned in the context of global assessments, as there are still too many uncertainties which need to be overcome first.

5.3.5 Session 3: Policy recommendations: How to use the quantitative tools for policy development within TEEB

Rob Alkemade (Netherlands Environmental Protection Agency) acknowledged that the interim project report gives a good overview of the existing models. He pointed out that most of them are still missing the crucial point of how the loss of biodiversity feeds back into the economy. Although the MSA indicator seems to be the only available biodiversity indicator so far, he saw a need to go beyond this indicator, as it does not say anything about species functions, species richness, red-list species, or the community level – aspects which are of major relevance for the provision of ecosystem services. The same goes for biodiversity in aquatic environments. The aim should therefore be to develop a set of new biodiversity indicators that link to ecosystem services.

Rob preferred the **use of parallel model suits** in order to ensure that modelling results can be compared to each other. As a positive example the competitive use of different models within the IPPC has been mentioned. Furthermore, he stated that there is a need for the **formulation of scenarios that focus on biodiversity** (instead of climate change) in order to **derive a set of relevant policy options**. A problem with the scenarios that have been analysed in the project so far is that they differ little in their biodiversity outcomes.

It was noted in the discussion afterwards that, when coupling models together, it is important to include appropriate feedback between the models.

Heather Tallis (Stanford University) suggested that the project team should consider the **creation of new, more policy relevant scenarios,** which differ from the usually applied scenarios. Policy-makers often find it difficult to engage with complex scenarios that have little to do with the real world and are based on multiple assumptions (e.g. the impact of talking about TechnoGarden, one of the four scenarios in the Millennium Ecosystem Assessment, to most people is limited). She recommended **considering only a few types of policies** (e.g. payments for ecosystem services, mitigation and offsetting, subsidies, caps). For example, it is important to develop scenarios that are relevant to REDD now, so that the impacts of possible policy options can be examined. The results could have implications for a range of ecosystem services, beyond carbon storage, including biodiversity and water benefits. The use of models for such purposes would help politicians and other decision-makers understand their value. She also stressed the use of competing models similar to IPCC, considering rigour and political sensitivity.

Heather stressed that the **link between biodiversity loss and poverty** should be a central aspect of the assessment. In this context, she noted that the Millennium Development Goals (MDG) rely on ecosystem services. Ecosystem services are so far not covered in most models, because those can often not take informal markets into account. Rather than covering the whole range of ecosystem services, she suggested that it would be better to **focus on only a few important services** such as clean water and flood control. The latter one could probably

be assessed more easily in the context of institutional settings. In addition, for ecosystem services models, it is important to not only consider the supply of a service (for example, water availability), but also the demand, as this will change significantly in the future with implications for the availability of the service.

Furthermore, she promoted the idea of using **simple models** such as InVEST. The exercise should be focussed on what is appropriate for different policy contexts, rather than being aligned with the models' requirements. It was noted in the discussion that InVEST would be useful to try out in the TEEB setting to test how well it performs.

<u>Villy Christensen</u> (University of British Columbia) acknowledged that the interim project report covers all of the important issues. He stressed that the relevance of the project results depends to a high degree on the **policy questions to be answered**. Such a set of policy questions should be developed within TEEB. Furthermore, a **common set of drivers and indicators** to be used in all assessments should be developed, as well as **guidelines for how to translate scenario policies into changes in model drivers or objectives.**

He stated that most models require a vast amount of data and that these data are often missing in the area of biodiversity. Therefore, modelling approaches should build upon available data. He stressed that **the informal sector and value chains should be taken into account** [producer-processor-distributor-seller-consumer] in the modelling exercise, as these aspects will make a huge difference with regard to the social dimension of biodiversity loss (as the work of Hernando de Soto could demonstrate). He mentioned the example of the **Global Ocean Economics Project**, which takes account of these issues. The underlying model will be finished in time to be of relevance for the TEEB project. The model showed the importance of taking the whole value chain into consideration, as this has changed the outcome of the model significantly. Only looking at the entire value chain could explain why current overfishing has its roots in economic pressures although revenues for the fishery sector are decreasing.

With regard to priority options to be incorporated into the models, Villy suggested to **couple reliable, specialised models** set-by-set to avoid one big model that could become unmanageable (the so called 'Frankenstein' model). This could facilitate the integration of terrestrial and marine domain models. However, in this context, scale issues and data-exchange formats are important factors to consider.

Villy noted that model calibration with existing data is important, however, this is limited by data availability. He therefore suggested that a **global database** is needed of data resources, their use and status. Consideration also needs to be given to data exchange formats so that database can feed models directly.

On the use of the project results for policy and decision-makers, he commented that one should think about tools such as decision-support systems, policy toolkits, and end-user interfaces. Policy-makers are usually less interested in the assumptions and specifications made in the assessment process, but demand **simple communication tools.** Villy demonstrated the output of the EcoOcean model linked to gaming software, which visually illustrated the impacts of specific policies on the marine environment, demonstrating a potentially powerful tool for communicating to policy- makers. Visual outputs had been used

before, but not linked to gaming software, which enable dynamic visual feedback that reflects the impacts of chosen policies.

Henrique Pereira (University of Lisbon) stated that not all of the most important drivers of biodiversity change are being addressed in the scenarios. We lack models that project biodiversity changes from the expansion of natural vegetation in developed countries. He regards the **MSA indicator as an adequate tool** for modelling, but noted that the **GLOBIO methodology used to calculate it has not been validated,** which is a widespread problem with many scenarios and models but causes problem with the acceptance of MSA as an indicator. There are more models to project the impacts of climate change, since this is – in contrast to projecting changes in biodiversity from other drivers – a relatively easy exercise.

Henrique noted that particularly **invasive species and biotic exchange** are not covered by the majority of the models, although these are important drivers for the global loss of biodiversity (for instance on islands). In freshwater systems, dam construction is one of the biggest drivers of biodiversity loss, but no scenarios account for it. Moreover, issues such as **overexploitation of resources** (other than fisheries) **and pollution of ecosystems** are not yet in the focus of modellers. Neither are models able to deal with issues such as intensification and extensification of land-use management, or the recovery and expansion of natural vegetation (which are important issues in many regions, e.g. Europe).

Another limitation of current models is that they do not address **flows of ecosystem services** (where do people benefit from services produced elsewhere?) and the **scale of ecosystem service delivery**. Furthermore, we lack understanding of the direct links between ecosystem services and biodiversity.

Henrique suggested that it would be worth doing some '**reality checks**' on important issues using simple robust models of the key ecosystem services. Moreover, one needs to be more open with regard to models, e.g. make them available as open source.

Regarding a possible communication strategy, Henrique Pereira proposed **the use of storylines** or even the use of 'scary' scenarios, since people tend to pay more attention to them than to the bare figures. The project team should also develop storylines that are based on partial, simpler models that accompany the big integrated approach. He also suggested the development of scenarios by cross-cutting experts to incorporate the threats that have not to date been considered.

Discussion

Graham Tucker pointed out that positive visioning stories often have a greater impact than negative scare stories (because many people chose not to believe them). Henrique Pereira agreed about the need to communicate positive scenarios side-by-side with negative ones and responded that in GBO-3, a number of experts will also be writing about the biodiversity restoration opportunities arising on apparently negative scenarios for biodiversity conservation.

There was also a discussion regarding the appropriate scale/spatial resolution and accuracy of the modelling exercises. It was mentioned that for many issues, like the assessment of impacts of agricultural practices on riparian vegetation local/smaller scale models/assessments are necessary as the global one lack in a scientific basis for this small scale interdependencies.

Joachim Spangenberg (Sustainable Europe Research Institute) stressed that, in order to be relevant to policy-makers, a model needs to be able to **show the impacts of certain policy decisions** as it has been attempted in the ALARM project. Scenarios are useful for pointing to the general direction, but cannot provide the detail of the implications of policy decisions. Policy-makers should focus biodiversity policies on the major pressures (such as land use patterns including transport, invasive alien species and climate change) and aim to minimise these pressures (for example through agricultural policy, EU TEN, or structural funds).

Within TEEB, it should be emphasised that if there is no apparent economic value for a certain ecosystem function, this does not mean that it is worthless. In this respect, it is important to emphasise that "there is no useless biodiversity" and TEEB must clarify what can and what cannot be monetised. Joachim pointed out that the models do not currently take account of shocks, such as the recent economic crisis, or non-linear changes in biodiversity and ecosystem services. He suggested priming models with shocks to gauge how they respond. For example, the International Energy Agency predicts a recovery from the current crisis followed by another crash due to oil shortage. These shocks should be examined in future projections of models. He also noted a problem with IMAGE, namely that it does not allow for the feed back of economic parameters into the model.

Joachim concluded by emphasising that the figures produced within TEEB must not necessarily be precise, but that **they must be robust** enough to provide the basis for directionally secure policy decisions. The project team needs to consider what the requirements of decision-makers are and design tools to fit around them.

Finally, he strongly suggested **including recent FP6 projects** on biodiversity modelling in the evaluation.

5.3.6 Summary of the expert feedback

Alexandra Vakrou (DG Environment) and Patrick ten Brink summarised the session by stating that it was likely that the GLOBIO and EcoOcean models would be used between now and Nagoya, but that it should be supplemented with simpler models as a reality check. The overall move should be towards a more specialised suite of models in the medium term. GLOBIO could also be run with a different set of scenarios.

Ecosystem services values are currently not adequately addressed in models, making it an area for future development. There needs to be a greater focus on the local scale, which can be provided by the specialised models, which should accompany the bigger picture.

It was concluded that there is an urgent need to add fisheries and the marine environment to the used global models.

Alexandra Vakrou observed that issues surrounding joining models together, such as the differences in scales and units (data availability), will have to be addressed before it becomes a viable option, if at all.

Irrespective of which models are used in the future there is a need to address current knowledge gaps such as the influence of IAS or technical infrastructure on freshwater biodiversity and the relationship between biodiversity and ecosystem services . There is no

perfect indicator available so far. Work on indicators has to be intensified and in respect to the MSA it is crucial that the MSA link to ecosystem services is tested.

From the policy maker side it would be beneficial to run scenarios that reflect "real" policy options. An interesting example would be the discussion on REED or biofuels. To increase the communicative power of global models they should be supported by local/small scale models and narrative stories e.g. on specific ecosystem functions or tipping points.

Finally it would be useful to have a set of competing models in the medium term as for example promoted by the IPCC.

Closing of the workshop

Alexandra Vakrou (DG Environment) thanked the participants for their fruitful contributions to the discussion and closed the workshop.

6 INTEGRATION OF THE STUDY FINDINGS INTO THE SECOND PHASE OF TEEB

6.1 Description of Task 5 from the ToR

"Based on the outcome of the workshop, the contractor will propose a possible modelling framework that could be used for the second phase of TEEB, including the time and the resources needed."

This task aims to make explicit recommendations on what model runs could be valuable to help meeting the wider TEEB objectives of assessing the costs and benefits of biodiversity/ecosystem losses and the relative assessment of the cost of action relative to the benefits of action. This builds on the analysis described in Chapters 2-4 and the discussions at the May 13th workshop described in Chapter 5 and subsequent reflections by the team.

The recommendations initially focus on providing input to TEEB, specifically relating to opportunities to contribute to the TEEB reports to be circulated at CoP 10 in Nagoya in October/November 2010. More generic recommendations are then provided that aim to be of relevance to longer-term initiatives, including EEA's work on the Eureca project⁷ and the new Millennium Ecosystem Assessment planned for 2015.

In preparing these recommendations, it is firstly important to consider what would constitute an "ideal" modelling framework, so that requirements for pragmatic choices can be explicitly identified and their implications clarified in the wider policy context. Already in TEEB Phase 1 the choice of the GLOBIO-IMAGE model, linked to the OECD 2030 baseline-scenario, and the use of the MSA indicator sparked considerable discussion amongst biodiversity experts. Some have taken the choice of MSA by the TEEB team as an indication that the team feels this indicator is better than others. In reality, the selection was simply one of pragmatism, as the MSA was the indicator used in the main model that was available and possible to build on (see Braat & ten Brink, 2008 (eds.)).

6.2 Context: The ideal global assessment of the economics of ecosystems and biodiversity and the TEEB Phase 1 first step

Ideally, an analysis of economic consequences of changes in biodiversity, ecosystems and ecosystem services at the global scale would include a comprehensive upgrade of the current modeling approaches. This would include an integrated terrestrial and marine model and an improved set of indicators that can represent the range of biodiversity. Table 6.1 summarises the list of elements for an ideal modeling framework.

⁷ http://eureca.ew.eea.europa.eu/index_html

Table 6.1 A description of the "ideal" elements of a biodiversity or ecosystems analysis

Ideal action	Description
A global analysis across all biomes and ecosystems	This may be via one model or range of models, determined by model coverage and quality which would include terrestrial, marine, wetlands and coastal biomes, including mountains, islands and man-made ecosystems.
An analysis across the full set of ecosystem services	This could, for instance, be based on the MA list (MA, 2005a) or on an updated list that is more "benefits" focused (as recommended in Balmford <i>et al</i> (2008) and under ongoing investigation in TEEB Ecological and Economic Foundations. This may require complementary analysis using different ecosystem service models, if details are not sufficiently well covered in a global general coverage model.
Regional specifics and particularities are taken into account	This could eventually require regional modeling where global models cannot give sufficient detail to make analysis relevant. It could also require some local modeling where details of ecosystem service inter-linkages are critical.
Indicators that best represent the biodiversity and ecosystem services	This requires a move beyond the MSA, which has been a pragmatic choice to date and would need to ensure that data exist in appropriate detail.
Looking at costs and benefits over time	This should include financial, broader economic, social/human and environmental implications of policy inaction and action. This needs appropriate treatment of not just costs captured in general economics (and hence in GDP) but also externalities as well as opportunity costs.
A "suite" of models that allow comparison and cross-checking.	This would mirror the IPCC approach of complementary or competing models. It is important to note that reality may lie outside the envelope created by the model set, so a link to monitoring is particularly important.
A range of scenarios of drivers and responses.	This will need to include various baselines and a set of regionally specific policy actions, consistent at the global level.
Complementing global level answers with regional estimates	This will allow cross-checking of the answers as part of quality control. It should include national and even lower level estimates to ensure that results are most relevant to the audiences and reflect practical realities.
Use of policy relevant scenarios that can describe policy options	This enables policymakers to directly view the impacts of particular policy options. For example, in relation to protected area coverage; investment in natural capital such as forests or coral reefs; or subsidy reform.
A spatially explicit analysis	This would consider the spatial dimension where services produced in one place are "enjoyed" in another into account.
Adequate and achievable within the timescales	This includes model runs and analysis time, access to models and engagement by model holders. Engagement of model holders is important not just to TEEB but will be very valuable for other ongoing and post-TEEB work.

The TEEB Phase 1 analysis was significantly more limited than this ideal. It comprised a global analysis for land-based biomes based on a single baseline scenario with no-new-policies and quantitative modelling (marine, coral and invasive alien species were only treated by literature review and "back-of-the-envelope" calculations) incorporating:

- A subset of the biomes results were more forest focused (data were not available for all biomes);
- A subset of ecosystem services (again economic data not available for all services; extensive use of benefit transfers);
- A single indicator used in the quantitative model based analysis– MSA (this being "hard-wired" in the GLOBIO model);
- Cost of policy inaction, but not costs of action or benefits, or opportunity costs; and
- Very limited sensitivity analysis with some ranges for the economics, but not for different drivers.

Scope and ambitions of TEEB II

In short, the first estimate was "a first estimate", acceptable in its limitations given the timescale of the first exercise. The expectations for a TEEB report to the CBD CoP 10 in Nagoya are significantly higher; there is an expectation⁸ of the results being one level better than the first estimates. However, there is also realism by experts⁹ that the task is very complex, data are not always there (and will not all be there in the next 12 months), nor indeed do global models exist for everything. Hence the community does not expect a perfect comprehensive answer. In practice, there is an expectation that the TEEB report in September 2009 be a step forward from the May 2008 Bonn report, and that the Nagoya October 2010 answers are a full "level up", but that further work and improvements will be needed beyond that to move towards "the ideal"¹⁰. It is recognized that the full suite of models, using better biodiversity indicators to model changes across ecosystems, ecosystem services and covering costs of action (including opportunity costs) and cost of inaction, will not be fully possible by Nagoya (given that the delivery date will be several months in advance of the CBD meeting).

6.3 Recommendations

This section presents recommendations on different aspects of the models, scenarios and assessments in light of the ambitions for using models and scenarios for TEEB and beyond based on the analysis of currently available models and scenarios.

Which models to use

6.3.1 Modelled effects on nature

There are many models that effectively forecast changes in the biophysical domain. They differ in focus, timeline, assumptions, spatial resolution, sensitivities and in choice of indicators of biodiversity and ecosystem services (see below). This is covered in Chapters 2 and 4.

⁸ Based on discussions with interested parties at the Athens Beyond 2010 conference.

⁹ Ibid as point 1.

¹⁰ Discussions at the scenarios and models workshop, Brussels.

The conclusions on the "best" <u>available</u> models at the current time are:

- Land-use: the IMAGE model, and some of the other integrated models, are arguably the most useful at this stage, given IMAGE has a finer grid and greater track record than the other models.
- Marine: The EwE family of models is the best in both a technical sense and usability for TEEB as it has global coverage (i.e. all oceans) in a regionalised format. There is a reasonably data rich base, although the economics is still being developed.
- Coral reefs: There is a coral reef model that has some promise REEFS at RISK.
- Coastal (mangroves/wetlands): There are no global models, but some regional/local models exist, for Louisiana, New Jersey and South East Asia (for example, on mangroves). The challenge is one of upscaling or aggregating to the global scale.

Meeting the requirements of TEEB II will require the upgrade, integration and extension of existing work. As noted above, this needs to cover all ecosystems and ecosystem services, be global and build in a diverse set of indicators for biodiversity.

There also needs to be developed a fully functional link of biodiversity or natural capital to economic values and social impacts. This is not currently available in any existing model, except for a design in the GUMBO model which has yet to be tested in a global assessment. This suggests that in the short term an approach of "adding on" an "economics or valuation" module to the outputs of the physical models remains an important part of the practical solution.

Given the timescale, it will be necessary to work with current material and extend it to develop a new fuller TEEB toolkit (see also Chapter 2). This toolkit should include:

- Use existing models and add new indicators including:
 - IMAGE-GLOBIO and COPI upgrade and scenarios;
 - o marine (EwE set and MSA indicator to match GLOBIO land assessment);
 - o global models for coral reefs; and
 - make use of the results from the InVEST global assessment (which is forthcoming).
- Promote efforts to validate GLOBIO and other models through observation and experiment.
- Incorporate a wider range of drivers into models (see later discussion).

It will also be important to work with models at a regional or local level to offer additional insights on the ecology-economic-society links, for example for mangroves, water purification and flood control or natural hazards.

Suitable modelling of ecology-economic-society links of mangrove development in a spatially explicit manner will be critical to help understand the economics in more detail in order to assess social costs, distributional impacts and also risk issues (for example, as related to flood risks).

On water purification-provision, there is a need to apply suitable spatial planning tools to be able to show the interrelation between natural capital and associated activities providing the service, and the benefits and help tools offer to support the wider use (if and where appropriate) of payments for environmental services as well as strategies to protect or invest in natural capital. This will also be important to link to the development of natural capital accounts.

On flood control it will be important to apply suitable spatially planning tools to develop risk maps, links to event frequency and also socio-economic-demographic issues to help communicate risk and cost.

6.3.2 Empirically test the effect of changes in key assumptions

Testing the sensitivity of modelling results to key assumptions is a very time consuming and costly activity. The only "good" way to do this is together with the original model-developers; which would require contracts with "supervision" (see conclusions in Chapter 4).

6.3.3 Model effects on the economy

Very few models actually address within them the economic impacts of changes in biodiversity and ecosystem services. The main exceptions are the GUMBO/MIMES models. For other models, an "economic impact module" needs to be added (as with the COPI work); the output of the GLOBIO-IMAGE model was changes in land-use and degradation up to 2050, and an "economic module" was added, outside of the model.

There are therefore a number of ways forward:

- Discussion with the GUMBO/MIMES modelling team (Costanza et al.,) about their approach to investigate the possibilities of using a model that combines both environmental and economic aspects, arguably in parallel;
- Consider the addition of meta-models, such as InVEST and MIMES for rapid mapping of alternatives and first indications of economic feedback on sectors;
- Further develop the "COPI spreadsheet model" with COPI 2 results (more case study values, better view of sensitivities of benefit transfer, effects of substitutability) and the wider TEEB Ecological and Economic foundations work on the "matrix of ecosystem service values" (see Chapter 7 of the report);
- Substantiate ecosystem service land-use type (MSA) relationships with empirical data; and
- Test model(s) scenario context (for example, OECD baseline for comparison with COPI 1).

Some parts of the 2nd and 3rd points have been carried out in the COPI II contract [ENV, 07.0307/2008/514422/ETU/G1], but while a step forward, this does not go as far as addressing all the gaps.

Scenarios

6.3.4 Baseline scenarios

There has already been extensive work done on baseline scenarios of different types within the range of global assessments. It is arguably not cost-effective to focus efforts on creating a new suite of baseline scenarios. However, for the proposed modelling of the economics of ecosystems and biodiversity, a combination of models will need to be used and these risk having different assumptions within the baseline scenarios and hence creating potential incompatibilities. There is the possibility, therefore, to follow the example of the IPCC to coordinate the assumptions within a baseline scenario, thus removing these potential compatibilities between model comparisons. The critical new work will be on the policy action scenarios.

6.3.5 Policy action scenarios for biodiversity and ecosystem services management

Very few of the global assessments studies have scenarios which deal with biodiversity and ecosystems services explicitly. The analysis carried out by the IMAGE-GLOBIO toolbox for GBO2 is a rare example, at least at the global scale (see sCBD and MNP, 2007). The GBO2 scenarios should be further developed, with integrated packages and regional specific sets of policy measures. Additional work would ideally also build on TEEB D1 for applying the toolkit of policy measures/instruments and take into account the expected targets for post 2010, although this may not be possible in the timescale. A policy dialogue should be set up to develop Policy Action Scenarios which have a broad support across stakeholders and world regions (an example is available in the GBO2 analysis (sCBD, 2006)). The scenarios need to build in the key drivers behind ecosystem and biodiversity loss (population growth, economic growth, consumption patterns (notably calorie intake and dietary preferences), productivity gains (notably for food production), trade and transport growth etc. There still may also be a need for policy measures, both in business-as-usual scenarios and for different policy action scenarios. This can therefore usefully build in results from the *Underlying Causes* project (ENV.G.1/FRA/2006/0073).

It will be useful to ensure different milestones are integrated, notably, by 2015 (to reflect the MDGs), as well as analysis to 2020/2030/2050 to be sufficiently short term for policy makers, but sufficiently long term to allow major trends to be integrated.

Attention should be paid to the construction of meaningful alternative scenarios, which should focus on the main drivers of land-use change and biodiversity loss and make use of the full potential of the existing models when implementing those scenarios.

The scenarios need to be able to explore critical issues such as deforestation and REDD approaches, biofuels policies, agriculture, productivity and consumer demand. The figure below gives a simplified schematic graphic of contributions that some policy tools could hypothetically make to an alternative natural capital development path.

Figure 6.1: Natural Capital loss under no new policies baseline, alternative development path and contribution of instruments - a simplified schematic.

Source: ten Brink (2009). Presentation: *Measuring Natural Capital TEEB approach and Working insights*. Presentation to Chinese Delegation Defra, UK 6th July 2009

Indicators

6.3.6 Systematic classification of ecosystem service indicators

Changes in terms of ecosystem services have been described under a great variety of indicators and mechanisms. They are as variable across the studies as the definitions of ecosystem services. A systematic classification of ecosystem service indicators is being developed now (by the World Research Institute -WRI) but as for the definition and selection of biodiversity indicators, a broad discussion about how appropriate and representative the data are, needs to be initiated and "given a sense of urgency". There is a short-term tension between indicators that are available in the models and hence available for analysis, and those that would be "better" as they reflect ecosystems and biodiversity better. It is important therefore that a phased approach be taken, distinguishing between what can be used now (and present results with due caveats), and what can be developed in parallel, so that different approaches are available in the future, building on different indicators. It should be ensured that supply and demand of ecosystem services are covered to be able to estimate actual service provisioning and help valuation.

6.3.7 Re-examination of the use of the MSA indicator

The use-ability of other biodiversity indicators than MSA (see Chapter 4) must be further developed by examining the relationships between different indicators of biodiversity, land use and ecosystem services. Some ecosystem services may be better modelled directly, as they appear not to be affected by biodiversity/ecosystem intactness as measured through the MSA. The use of biodiversity as an indicator of ecosystem services, such as pollination, pest

control, genetic resources and spiritual services (as in the global study by Gallai *et al.* 2009) could cover gaps in current models. It was also suggested during the workshop that consideration should be given to assessing biodiversity impacts according to the Human Appropriation of Net Primary Production (HANPP) indicator. HANPP measures to what extent land conversion and biomass harvest alter the availability of Net Primary Production (biomass) in ecosystems. This could be part of the indicator development effort.

6.4 Research needs

The need for more research into linkages and relationships has to be highlighted, including how biodiversity loss influences ecosystem services, and how drivers affect both biodiversity and ecosystem services, both independently and inter-relatedly. Understanding these relationships (the core of any models) will help to identify the best metrics/indicators.

6.4.1 Models

A wider range of drivers should be incorporated into models. Further development should focus on enhancing economic feedback and sectoral impacts, broaden the set of biodiversity indicators to strengthen their relevance for ecosystem service provisioning and integrate ocean models with socio-economic and terrestrial models.

Current models are less apt at dealing with "non-linearities" – such as issues of crisis or modelling tipping points that might cause local or global disasters. In principle this could be addressed within "disaster" scenarios but modelling development will need to be done to ensure that these work. It will be useful to carry out selective "what if" analyses, such as simulating a resources crisis, effects of major plant pest outbreaks (e.g. potato blight), ocean acidification cases, and so on. The aim of this would be to explore future extremes to see whether policies or trajectories are "future proof" or "crisis proof".

There is a need for models to address trade-offs of decisions that reflect wider spatial and intergenerational relationships. For example, actions that have a positive impact in one area to one group of people may have adverse impacts on those in other areas. Similarly, actions that have short term gains may be followed by low term costs, affecting other generations.

6.4.2 Indicators

As indicated above, it is necessary to evaluate the extent to which the MSA indicator (and changes to it) correlate with actual changes in biodiversity and ecosystem services. The aim of this should be to validate and calibrate key functional relationships.

Realistic time deadlines need to be set to achieve this (i.e. 2-5 years minimum) with sufficient funding allocated for both the basic research needs and the model development and application.

6.5 General recommendations

As this review of the available models has shown, none of the existing models can fulfil all the needs for TEEB. No one model covers all aspects of biodiversity and ecosystem services, and none integrate marine and terrestrial realms.

Combinations of multiple tools are required to cover the entire chain from ultimate drivers to impacts on ecosystem services and biodiversity; to link across scales as needed to capture key processes at a finer scale; and to enhance assessment of feedbacks from changes in ecosystem services. It is also important to accept that one metric cannot be used to model biodiversity in

its entirety, nor the full suite of ecosystem services – a range of models focusing on different elements will be required, and at different scales, so as to build up a more comprehensive picture of change. Compare the results from multiple models rather than relying on one alone; i.e. an ensemble approach (currently suggested in climate modelling). These should include models centred around land-use/cover change (like IMAGE) and those that are not. Consider the use of meta-models like InVEST and MIMES for rapid mapping of alternatives and first indications of economic feedback on sectors.

It is essential to consider the potential contributions of teams and consortia, not separate models alone to assess potential for contributions to TEEB: besides methodological soundness, scientific rigour and technical capabilities of the models, the teams' track-record in contributing to large scale international assessment studies is an important criterion. This has been the experience in the IPCC process. Availability of the toolbox to external users, and communication about the modelling approach and assumptions is considered essential to build policy support. The team should ideally work across models, and in coordination with the modelling teams related to the models. This is important as the elements of the analysis of different models have to fit together and relate to common scenarios to be able to create a global composite picture.

In addition, it could be useful to consider inviting a range of different modelling groups to undertake model runs using the same policy-relevant scenarios as competition breeds innovation.

To be pragmatic it will be important to explore ways of combining quantitative and qualitative approaches and not rely purely on quantitative models to inform policy (as they may give a false sense of greater accuracy over 'expert-led' qualitative options).

6.6 Recommendations for TEEB II (up to October 2010)

On the basis of the analysis and workshop discussions, the following recommendations are made for the analysis.

6.6.1 Developing new approaches

- 1. **Expansion of a global model suite.** A small but growing suite of global models is needed. Small initially because there are not many models available that can answer the questions, and growing as there is a need for different approaches to allow cross-checking and comparison. Below are a number of considerations.
 - a. To address terrestrial ecosystems, the study and discussions suggest that an updated and extended use of IMAGE, GLOBIO, LPJmL and WaterGAP model be run covering land-use, biodiversity and a selection of ecosystem services.
 - b. For fisheries and the marine environment, the best current global marine models are: EwE family, cumulative Threats Model and Reefs at Risk model covering limited biodiversity and the relevant ecosystem services.
 - c. Reality check or complement: apply simple model(s) for key ecosystem services as the above models will not cover everything.
 - d. It is important not to try to bundle everything together as this risks creating a "Frankenstein model."
 - e. Aim for a suite of models to be available and operational (for the question of biodiversity/ecosystem loss) in the medium term.
 - f. Use species area richness (SAR) for additional biodiversity estimates.

- g. Upgrade COPI for economic valuation of gains and losses due to biodiversity policy action and inaction.
- h. The GUMBO/MIMES model suite can provide indications about ecosystem services dynamics and includes feedbacks to economic values. The suite is being further developed and its progress should be closely tracked.
- i. Use ATEAM/InVEST for regional specific analysis, which in itself it adds species richness estimates and several ecosystem services.
- 2. **Develop global models run with different scenarios.** Include a wider range of policy actions that include more specific approaches to tackle biodiversity loss including direct impacts of biofuels, REDD options, subsidy reform, investment in protected areas and other natural capital, and market based instruments.
- **3.** Complement the above with regional or local models as well as ecosystem specific models and sector models. InVEST could be useful to bring in the spatial angle, for example by demonstrating links to flooding, as well as developing case studies focusing on ecosystem functions. For sector, ecosystem or policy specific modeling it could be useful to do REDD modeling, use agricultural models, and also carry out modeling of biofuels to address critical questions. In many cases significant work of others can be built on, so care needs to be taken to avoid duplicating existing work.

6.6.2 Implementation and resources required

Below are suggestions as to practical needs for analysis to support TEEB to Nagoya. This includes some order of magnitude estimates of costs to help clarify what is possible within the timescale and budget. The outline is constrained by the timeline for TEEB II and the assumed review and CBD procedure requirements.

Upgrade of the global toolbox

- Completion of current extensions and improvements of IMAGE and EwE families (unknown projects and timelines).
- New version of GLOBIO, including several other biodiversity measures (based on species-response models), link to EwE marine models with a MSA-like biodiversity indicator, and some ecosystem service indicators (based on empirical relationships). This would allow GLOBIO to do more than the current version and address some its current weaknesses as regards biodiversity/ecosystem impact modelling.

Development of broadly supported Policy Action Scenarios

- Policy dialogue using key policy makers, scenario developers, links to beyond 2010 policy groups, and work on quantifying the policy recommendations present in TEEB D1 and parallel activities (e.g. TEEB France, CBD, etc.).
- Based on GBO2 and regional specifics, and building on the September product and experience.

Scenario-runs (including sensitivities)

• Embed the results of the policy dialogue in policy scenarios and run these scenarios, assess results in biodiversity, ecosystem services, and social and economic terms, including risks and opportunities.

Synthesis

- Produce a synthesis report and prepare presentations for Nagoya.
- Start communication of results.

6.7 The medium and long term: up to the MDG timescale 2015 and beyond

In the longer term it would be useful to facilitate development of and competition amongst a variety of models; following the IPCC approach. Indeed this could be particularly relevant to the establishment of an *Intergovernmental Panel on Biodiversity an Ecosystem Services* (*IPBES*).

Such work needs to be supported over the period to Nagoya, but the fruits of competition are most likely to come only after Nagoya. To see how much the models and the assumptions in the scenarios influence the results, different scenarios and model combinations should be tested. This will help allow one to see the answers in context. It will also help avoid answers being too anchored to one model, one perhaps too small set of indicators and assumptions, and subset of the experts working in the field. It would, for example, be useful to run GUMBO/MIMES with the same assumptions. The value of encouraging competition amongst models also holds true for marine/fisheries models.

7 **REFERENCES**

Adebulugbe, A, Alcamo, J, Herbert, D, Lebre La Rovere, E, Nakicenocic, N, Pitcher, H, Raskin, P, Riahi, K, Sankovski, A, Sokolov, V, de Vries, B & Zhou, D (2001) Greenhouse gas emissions mititgation scenarios and implications. In: *Climate change 2001: Mitigation. Contribution of working group III to the thrid assessment report of the Intergovernmental Panel on Climate change*. Cambridge University Press, Cambridge, UK and New York, USA.

Agarwal, C, Green, G M, Grove, J M, Evans, T P & Schweik, C M. (2002) A review and assessment of land-use change models: dynamics of space, time and human choice. *Gen. Tech. Rep. NE-297.* Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station.

AIM: *Chapters in CLIMATE POLICY ASSESSMENT* (M Kainuma, Y Matsuoka, T Morita (Eds.), Springer, 2002.

Alcamo, J, Döll, P, Henrichs, T, Kaspar, F, Lehner, B, Rösch, T & Siebert, S (2003a) Development and testing of the WaterGAP 2 global model of water use and water availability. *Hydrol. Sci.* 48(3), 317-337.

Alcamo, J, Döll, P, Henrichs, T, Kaspar, F, Lehner, B, Rösch, T & Siebert, S (2003b) Global estimates of water withdrawals and availability under current and future "business-as-usual" conditions. *Hydrol. Sci.* 48(3), 339-348.

Alcamo, J., Leemans, R. & Kreileman, G.J.J. (1998). Global change scenarios of the 21st century. Results from the IMAGE 2.1 model. Pergamon & Elseviers Science, London.

Alder, J, Guenette, S, Beblow, J, Cheung, W & Christensen, V (2007) Ecosystem-based global fishing policy scenarios. *Fisheries Centre Research Reports*, 15 (7), 1-42.

Alder, J., Guénette, S., Beblow J., Cheung, W. and Christensen, V. (2007) *Ecosystem-based* global fishing policy scenarios, Fisheries Centre Research Reports 15(7), Vancouver, B.C., Canada, ISSN 1198-6727

Alkemade, R, Bakkenes, M, Bobbink, R, Miles, L, Nellemann, C, Simons, H & Tekelenburg, T (2006) GLOBIO 3: Framework for the assessment of global terrestrial biodiversity. In: MNP (2006) (edited by A F. Bouwman, T. Kram & K. Klein Goldewijk) *Integrated modeling of global environmental change. An overview of IMAGE 2.4.* Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands, page 171-186.

Alkemade, R, van Oorschot, M, Miles, L, Nellemann, C, Bakkenes, M & ten Brink, B (2009) GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. *Ecosystems 12*, 374-390.

Allen, J I, Blackford, J C & Radford, P J (1998) An 1-D vertically resolved modelling study of the ecosystem dynamics of the middle and southern Adriatic Sea. *Journal of Marine Systems* 18, 265-286.

Allen, J I, Sommerfield, P J & Siddorn, J (2002) Primary and bacterial production in the Mediterranean Sea: a modelling study. *Journal of Marine Systems 33-34*, 473-495. Arrhenius, O (1921) Species and area. *Journal of Ecology* 9, 95-99.

Anon. 2005. Land abandonment, biodiversity and the CAP. Land abandonment and biodiversity, in relation to the 1st and 2nd pillars of the EU's Common Agricultural Policy; outcome of an international seminar in Sigulda, Latvia, 7-8 October, 2004. DLG Service for Land and Water Management, Utrecht.

Avise, J C (2008) Three ambitious (and rather unorthodox) assignments for the field of biodiversity genetics. *PNAS 105*, 11564-11570.

Badeck, F-W, Lischke, H, Brugmann, H, Hickler, T, Hönniger, K, Lasch, P, Lexer, M J, Mouillot, F, Schaber, J & Smith, B (2001) Tree species composition in European pristine forests: comparison of stand data to model predictions. *Climatic Change 51*, 307-347.

Bakkenes, M, Alkemade, J R M, Ihle, F, Leemans, R & Latour, J B (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. *Global Change Biol* 8, 390-407.

Bakkenes, M, Eickhout, B & Alkemade, R (2006) Impacts of different climate stabilisation scenarios on plant species in Europe. *Global Environmental Change 16*, 19-28.

Bakkes, J.A. and Bosch, P. (2008) *Background report to the OECD Environmental Outlook to 2030. Overviews, Details, and Methodology of Model-Based Analysis.* Netherlands Environmental Assessment Agency MNP, Bilthoven and Organisation for Economic Cooperation and Development OECD, Paris.

Baldock, D., G. Beaufoy, G. Bennett, and J. A. Clark 1993. Nature conservation and new directions in the Common Agricultural Policy. Publisher, London.

Balmford, A., Bruner, A., Cooper, P., Costanza, R., Farber, S., Green, R.E., Jenkins, M., Jefferiss, P., Jessamy, V., Madden, J., Munro, K., Myers, N., Naeem, S., Paavola, J., Rayment, M., Rosendo, S., Roughgarden, J., Trumper, K. & Turner, R.K. (2002) Economic Reasons for Conserving Wild Nature. *Science* 297, 950-953

Balmford, A., Rodrigues, A., M. Walpole, ten Brink, P., Kettunen, M. & Braat, L. and de Groot, R. (2008). Review on the economics of biodiversity loss: scoping the science. For DG Environment, European Commission. 2007-2008.

Balmford, A. & Whitten, T. (2003). Who should pay for tropical conservation and how should the costs be met? *Oryx* 37(2): 238-250.

Balmford, A., Gaston, K.J., Blyth, S., James, A. & Kapos, V. (2003). Global variation in terrestrial conservationcosts, conservation benefits, and unmet conservation needs. *PNAS* 100(3):1046-1050.

Balvanera, P, Pfisterer, A B, Buchmann, N, He, J-S, Nakashizuka, T, Raffaelli, D, Schmid, B (2006) Quantifying the evidence for biodiversity effects on ecosystem function and services. *Ecology Letters* 9, 1146-1156.

Beier, C M, Patterson, T M & Chapin III, F S (2008) Ecosystem services and emergent vulnerability in managed ecosystems: a geospatial decision-support tool. *Ecosystems 11*, 923-938.

Bianchi, F J J A , Booij, C J H & Tscharntke, T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. *Proc. R. Soc. B 273*, 1715-1727.

Bjorndal, T. and Brasao, A. (2005) The East Atlantic Bluefin Tuna Fisheries: Stock Collapse or Recovery, *Working Paper SNF No. 34/05*, Institute for Research in Economics and Business Administration, Bergen. Available from http://bora.nhh.no/bitstream/2330/218/1/A34_05.pdf [Accessed 18 August 2009].

Bockstael, N E, Freeman, A.M., Kopp, R.J., Portney, P.R. & Smith, V.K. (2000) On measuring economic values for nature. *Environ Sci Technol* 34, 1384-1389.

Bondeau, A., Smith, P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M. & Smith, B. (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. *Glob Change Biol* 13, 679-706.

Boody, G., Vondracek, B., Andow, D.A., Krinke, M., Westra, J., Zimmerman, J. & Welle, P. (2005) Multifunctional agriculture in the United States. *BioScience* 55, 27-38.

Börjeson, L., Höjer, M., Dreborg, K.-H., Ekvall & T., Finnveden, G. (2006) Scenario types and techniques – towards a user's guide. *Futures 34*, 723-739.

Börner, J., Mendoza, A. & Vosti, S. A. (2007) Ecosystem services, agricolture, and rural poverty in the Eastern Brazilian Amazon: Interrelationships and policy prescriptions. *Ecol Econ* 64, 356-373.

Boston, A.N. & Stockwell, D.R.B. (1995) Interactive species distribution reporting, mapping and modeling using the World Wide Web. *Computer Networks and ISDN Systems* 28, 231-238.

Böttcher, H., Freinbauer, A., Obersteiner, M. & Schulze, E.-D. (2008) Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model. *Ecological Modelling 213*, 45-62.

Boumans, R., Costanza, R., Farley, J., Wilson, M.A., Portela, R., Rotmans, J., Villa, F. & Grasso, M. (2002) Modelling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. *Ecol Econ 41*, 529-560.

Braat L and P ten Brink (Eds) *et al* (2008) The Cost of Policy Inaction. The Cost of not Halting Biodiversity Loss. Report to the European Commission. Alterra report 1718. Wageningen.

Brand, EJ., Kaplan, IC., Harvey, CJ., Levin, PS., Fulton, EA., Hermann, AJ. & Field, JC. (2007). A spatially explicit ecosystem model of the California Current's food web and oceanography. NOAA Technical Memorandum NMFS-NWFSC-84.

Brawley, S.H., Coyer, J.A., Blakeslee, A.M.H., Horarau, G., Johnson, L.E., Byers, J.E., Stam, W.T. & Olsen, J.L. (2009) Historial invasions of the intertidal zone of Atlantic North America associated with distinctive patterns of trade and emigration. *PNAS 106*, 8239-8244.

Bricker, S. B., Ferreira, J. G. & T. Simas (2003). An integrated methodology for assessment of estuarine trophic status. *Ecological Modelling 169*, 39-60.

Brook, B. W., N. S. Sodhi, and P. K. L. Ng. 2003. Catastrophic extinctions follow deforestation in Singapore. Nature. 424:420-423.

Brovkin *et al.*, (2004) Role of land cover changes for atmospheric CO2increase and climate change during the last 150 years, *Global Change Biol.*, *10*(8), 1253–1266.

Brownstein, J.S., Skelly, D.K., Holford, T. & Fish, D. (2005) Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. *Oecologia 146*, 469-475.

Bruinsma, J. (ed.) (2003) World agriculture: towards 2015/2030. An FAO perspective. Earthscan, London.

Bryant, D., Burke, L., McManus, J. & M. Spalding (1998). Reefs at Risk: A Map-Based Indicator of Threats to the World's Coral Reefs. World Resources Institute. Available online: http://pdf.wri.org/reefs.pdf

Buckland, S.T., Magurran, A.E., Green, R.E. & Fewster, R.M. (2005) Monitoring change in biodiversity through composite indices. *Phil Trans Roy Soc B* 360, 243-254.

Butler, R.A., Koh, L.P. & Ghazoul, J. (2009) REDD in the red: palm oil could undermine carbon payment schemes. Conservation Letters 2:67-73.

Carpenter, S.R., Bennett, E.M. & Peterson, G.D. (2006) Scenarios for ecosystem services: an overview. *Ecology & Society 11 (1)* Art.29.

CEH (2007) Countryside survey United Kingdom 2007. Centre for ecology and Hydrology. Lancaster UK.

Center for International Earth Science Information Network (CIESIN). 1995. *Thematic Guide to Integrated Assessment Modeling of Climate Change* [online]. University Center, Mich. CIESIN URL: http://sedac.ciesin.org/mva/iamcc.tg/TGHP.html

Chan, K.M.A., Shaw, M.R., Cameron, D.R., Underwood, E.C. & Daily, G.C. (2006) Conservation planning for ecosystem services. *PLOS Biol* 4:e379.

Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C. & Diaz, S. (2000) Consequences of changing biodiversity. *Nature 405*, 234-242.

Chee, Y.E. (2004) An ecological perspective on the valuation of ecosystem services. *Biological Conservation 120*, 549-565

Cheung, W.W.L., Lam, V.W.Y. & Pauly, D. (2008). Modelling present and climate-shifted distribution of marine fishes and invertebrates. *Fisheries Centre Research Reports 16(3)*.

Cheung W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R. & Pauly, D. (in press). Projecting global marine biodiversity impacts under climate change scenarios. *Fish and Fisheries*

Christensen, L., Coughenour, M. B., Ellis, J. E. & Chen, Z. (2003) Sustainability of the typical steppe: model assessment of grazing on ecosystem state. *J Range Manage 56*, 319-327.

Christensen, V. & Pauly, D. (1992) ECOPATH II – a software for balancing steady-state ecosystem models and calculating network characteristics. *Ecological Modelling* 61, 169-185.

Christensen, V., Walters, C.J. & Pauly, D. (2000) Ecopath with Ecosim: A User's Guide. Vancouver, Canada, University of British Columbia Fisheries Centre and ICLARM, Penang, Malaysia

Christensen, V., Walters, C.J. & Pauly, D. (2005) Ecopath with Ecosim: a user's guide. Fisheries Centre, University of British Columbia, Vancouver. November 2005 edition, 154 p. (available online at www.ecopath.org)

Clarke LE, et al. (2007) Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations (U.S. Climate Change Science Program, Washington, DC), Synthesis and Assessment Product 2.1a.

Coad, L., Burgess, N., Fish, L., Ravillious, C., Corrigan, C., Pavese, H., Granziera, A., Besançon, C. (2009) Progress towards the Convention on Biological Diversity terrestrial 2010 and marine 2012 targets for protected area coverage, *Parks*, Vol 17, No. 2, pp 35-42.

Condie, S.A., Waring, J., Mansbridge, M.L. &. Cahill, M.L (2005) Marine connectivity patterns around the Australian continent. *Environmental Modelling & Software, 20*, 1149-1157.

Convention on Biological Diversity (1992) *Text of the Convention on Biological Diversity*, Article 2.

Cosgrave, W. J. and Rijsbermann, F. R. (2000) World Water Vision: Making water everyone's business. World Water Council. Earthscan, London.

Costanza, R., d'Arge, R., De Groot, R., Fraber, S., d'Arge, R., de Groot, R., Farberk, S., Grasso, M., Hannon, B, Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Suttonkk, P. and van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. *Nature* 387:253–260.

Costanza, R., Leemans, R., Boumans, R. & Gaddis, E.(2007) Integrated global models. In: Costanza, R. Graumlich, L.J. & Steffen, W. (eds) *Sustainability or Collapse: an integrated*

history and future of people on earth. Dahlem Workshop Report 96. MIT Press, Cambride, MA, pp. 417-446

(http://www.uvm.edu/giee/publications/Costanza%20et%20al.%20Dahlem%20book%202007 .pdf)

Costanza, R, Wilson, M, Troy, A, Voinov, A, Liu, S and D'Agostino, J (2006) The value of New Jersey's Ecosystem services and natural capital. Project report. http://www.nj.gov/dep/dsr/naturalcap[/]

Costanza, R., Voinov, A., Boumans, R., Maxwell, T., Villa, F., Wainger, L. & Voinov, H. (2002) Integrated ecological economic modeling of the Patuxent River Watershed, Maryland *Ecological Monographs* 72, 203-231.

Costanza, R., D'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P. & van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. *Nature* 387, 253-260.

Coughenour, M. B. & Chen, D.-X. (1997) Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process models. *Ecol Appl.* 7, 802-827.

Cramer, W., Bondeau, A., Woodward, F.I., Prentice, I.C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A. & Young-Molling, C. (2001) Global response of terrestrial ecosystem structure and function to CO and climate change: results from six global models. *Glob Change Biol* 7, 357-373.

Crise, A., Allen, J.I., Baretta, J., Crispi, G., Mosetti, R. & Solidoro, C. (1999) The Mediderranean pelagic ecosystem response to physical forcing. *Progress in Oceanography* 44, 219-243.

Crossman, N.D. & Bryan, B.A. (2009) Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. *Ecol Econom* 68, 654-668.

de Kok, J.-L. & Wind, H.G. (1999) Methodology for Sustainable Coastal Zone Management in the Tropics, The Integrative Research. Twente University, the Netherlands.

de Kok, J.-L. & Wind , H.G. (1996) Towards a Methodology for Sustainable Coastal Zone Management, A Case Study for South-West Sulawesi. Twente University, the Netherlands.

de la Vega-Leinert, A.C., Schröter, D., Leemans, R., Fritsch, U. & Pluimers, J. (2008) A stakeholder dialogue on European vulnerability. *Reg Environ Change* 8, 109-124.

de Vries, H. J. M., van Vuuren, D.P., den Elzen, M.G.J. & Janssen, M.A. (2001) The Targets Image Energy model regional (TIMER) - Technical documentation. MNP Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands.

Donner, S.D. & Kucharik, C.J. (2003) Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. *Global Biogeochem. Cycles 17* (3), 1085. doi:10.1029/2001GB001808.

Dumortier, M., L. de Bruyn, m. Hens, j. Peymen, A. Schneiders, F. Turkelboom, T. van Daele & W. Van Reeth (2008) Biodiversity Indicators 2008- State of Nature in Flanders (Belgium). Research Institute for Nature and Forest, Brussels. INBO.M.2008.6

Earth System Science Partnership (2009) website, http://www.essp.org/. Accessed 18/2/09 EEA (2008) Modelling environmental change in Europe: towards a model inventory (SEIS/Forward). EEA Technical report number 11/2008 (ISSN 1725-2237).

EEA (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. EEA Technical report, No 11/2007. Copenhagen.

Egoh, B., Reyers, B., Rouget, M., Richardson, D.M., Le Maitre, D.C. & van Jaarsveld, A. S. (2008) Mapping ecosystem services for planning and management. *Agric Ecosyst Environ 127*, 135-140.

Eichner, T. & Tschirhart, J. (2007) Efficient ecosystem services and naturalness in an ecological/economic model. *Environ Resource Econ* 37, 733-755.

ERSEM-II (1997) ERSEM-II European Regional Seas Ecosystem Model II (1993-1996), *Journal of Sea Research (special issue)*, 1997, 38 (3-4).

FAO (1996) Bazzaz, F. & Sombroek, W. (eds) Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes. John Wiley & Sons Ltd.

FAO (2004). Trends and current status of the contribution of the forestry sector to national economies. Working paper: FSFM/ACC/07.

Fischer, G. & Sun, L. 2001 Model-based analysis of future land-use development in China. *Agr. Ecosyst. Environ.* 85, 163–176.

Fischer, G., Tubiello, van Velthuizen, H. & Wiberg, D.A. (2007) Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080. *Techn Forecasting & Social Change* 74, 1083-1107.

Fischer, G., Shah, M., Tubiello, F.N. & van Velhuizen, H. (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. *Phil Trans R Soc B 360*, 2067-2083.

Fischer, G., Frohberg, K., Keyzer, M. A. & Parikh, K. S. 1988 Linked national models: a tool for international policy analysis. Dordrecht, The Netherlands: Kluwer Academic.

Fischer, G., Frohberg, K., Parry, M. L. & Rosenzweig, C. 1994 Climate change and world food supply, demand and trade: who benefits, who loses? *Global Environ. Change* 4, 7–23.

Fischer, G., Frohberg, K., Parry, M. L. & Rosenzweig, C. 1996 Impacts of potential climate change on global and regional food production and vulnerability. In *Climate change and world food security*, vol. 137 (ed. E. T. Downing), pp. 115–159. Berlin: Springer-Verlag.

Fischer, G., Shah, M., & van Velthuizen, H. 2002b Climate Change and Agricultural Vulnerability, Special Report to the UN World Summit on Sustainable Development, Johannesburg 2002. Laxenburg, Austria: IIASA.

Fischer, G., van Velthuizen, H., Shah, M. & Nachtergaele, F.O. 2002a Global agro-ecological assessment for agriculture in the 21st century: methodology and results. IIASA RR-02-02. Laxenburg, Austria: IIASA.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F. S., Coe, M.T., Faily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. & Snyder, P.K. (2005) Global consequences of land use. *Science 309*, 570-574.

Foley, J.A., Prentice, I.C., Ramunkutty, N., Levis, S., Pollard, D., Sitch, S. & Haxeltine, A..(1996) An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. *Global Biogeochem. Cycles 10*, 603–628.

Fulton, EA., Smith, ADM. & Johnson, CR. (2004a). Biogeochemical marine ecosystem models I: IGBEM - a model of marine bay ecosystems. *Ecological modellin*, *174*, 267-307.

Fulton, EA., Parslow, JS., Smith, ADM. 7 Johnson, CR. (2004b). Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance, *Ecological Modellin*, *173*, 371-406.

Fulton, EA., Slater, J., Smith, ADM. & Webb, H. (2005). Ecological indicators of the ecosystem effects of fishing. Final report. *Australian Fisheries Management Authority Report, R99/1546*.

Gallai, N., Salles, J.-M., Settele, J. & Vaissiere, B. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. *Ecological Economics* 68, 810-821.

Gallopin G., A. Hammond, P. Raskin, and R. Swart, 1997: *Branch Points: Global Scenarios and Human Choice. Polestar Series, Report no.* 7, Stockholm Environment Institute, Boston, MA.

Graymore, M.L.M., Sipe, N. G. & Rickson, R.E. (2008) Regional sustainability: how useful are current tools of sustainability assessment at the regional scale? *Ecol Econ* 67, 362-372.

GEO-3 (2002) Global Environmental Outlook 3- Past, present and future perspectives. UNEP, Earthscan Publications Ltd, London.

GEO-4 (2007) Global Environmental Outlook 4 - Environment for developemt, UNEP, Progress Press Ltd, Malta.

Gret-Regamey, A., Bebi, P., Bishop, I.D. & Schmid, W.A. (2008) Linking GIS-based models to value ecosystem services in an Alpine region. *Journal of Environmental Management 89*, 197-208.

Guo, Z., Xiao, X. & Li, D. (2000) An assessment of ecosystem serives: water flow regulation and hydroelectrical power production. *Ecol Appl.* 10, 925-936.

Halpern, B. (2003) The Impact of Marine Reserves: Do Reserves Work and Does Reserve Size Matter?, *Ecological Applications*, Vol. 13, No. 1, pp. s117-s137.

Halpern, B. S., Walbridge, S., Selkow, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Bruno, C.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Seig, E.R., Spalding, M., Steneck, R. & R. Watson (2008) A Global Map of Human Impact on Marine Ecosystems *Science* **319**: 948-952.

Hein, L., van Koppen, K., de Groot, R.S. & van Ierland, E.C. (2006) Spatial scales, stakeholders and the valuation of ecosystem services. *Ecol Econ* 57, 209-228.

Höjer, M., Alroth, S., Dreborg, K.-H., Ekvall, T., Finnveden, G., Hjem, O., Hochschorner, E., Nilsson, M. & Palm, V. (2008) Scenarios in selectd tools for environmental system analysis. *J Cleaner Production 16*, 1958-1970.

Hooper, D.U., Chapin III, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Saeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J. & Wardle, D.A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological Monographs* 75, 3-35.

Hughes, B. B. (2008) Forecasting Long-Term Global Change: Introduction to International Futures (IFs). Paper prepared for the annual meeting of the International Studies Association San Francisco, California, March, 2008.

Hughes, B.B. & Hillebrand, E.E. (2006) *Exploring and Shaping International Futures*. Boulder, CO: Paradigm Publishers, 2006; chapter 4.

Hui, D., Biggs, R., Scholes, R.J. & Jackson, R.B. (2008) Measuring uncertainty in estimates of biodiversity loss: the example of biodiversity intactness variance. *Biol Conserv 141*, 1091-1094.

IAASTD (2008), Synthesis Report of the International Assessment of Agricultural Science and Technology for Development, Washington.

IIASA (2008) EC4MACS methodology report – IIASA/FOR. http://www.ec4macs.eu/home/reports/Interim%20Methodology%20Reports/2_FASOM_MR. pdf

IPCC (2007), *Climate Change* 2007. *Fourth Assessment – Synthesis Report*. Intergovernmental Panel on Climate Change, UK.

IPCC (2000) IPCC Special report. Emission Scenarios. Summary for Policy Makers. IPCC, WMO/UNEP.

IUCN. 2004. Global action for nature in a changing climate. Conclusions of a meeting of IUCN's Climate Change Adaptation Working Group convened by Conservation International,
English Nature, IUCN, The Nature Conservancy, RSPB, Woodland Trust, WWF. IUCN-The World Conservation Union, Gland, Switzerland.

Jackson, R.B., Jobbagy, E.G., Avissar, R., Baidya Roy, S., Barrett, D.J., Cook, C.W., Farley, K.A., le Maitre, D.C., McCarl, B.A. & Murray, B.C. (2005) Trading water for carbon with biological carbon sequestration. *Science 310*, 1944-1947.

Jactel, H. & Brockerhoff, E.G. (2007) Tree diversity reduces herbivory by forest insects. *Ecology Letters 10*, 835-848.

James, A, Gaston, K.J. and Balmford, A. (2001) Can we afford to conserve biodiversity? *BioScience*, Vol. 51, No. 1, 43-51.

James, A., Gaston, K. & Balmford, A. (1999a). Balancing the Earth's accounts. *Nature* 401: 323-324.

Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. *PLoS Biology* 5 (6): e157.

Jung, M., Le Maire, G., Luyssaert, S., Vetter, M., Churkina, G., Ciais, P., Viovy, N. & Reichstein, M. (2007b) Assessing the ability of three land ecosystem models to simulate Gross carbon uptake of forests from boreal to Mediterranean climate in Europe. *Biogeosciences* 4, 647-656.

Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., Viovy, N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F. & Heimann, M. (2007a) Uncertainty of modeling Gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial bioshere models. *Glob. Biogeochem Cycles* 21, GB4021

Kamoni, P.T., Gicheru, P.T., Wokabi, S.M., Easter, M., Milne, E., Coleman, K., Falloon, P. & Paustian, K. (2007) Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030. *Agric Ecosyst Environ* 122, 95-104.

Kainuma, M., Matsuoka, Y., Morita, T., Masui, T. & Takahashi, K. (2004) Analysis of global warming stabilization scenarios: the Asian-Pacific Integrated model. *Energy Economics 26*, 709-719.

Kehl, W. (2008) Biodiversity and land use in central Asia. MSc Thesis Regent University, Virginia Beach.

Keppo, I., O'Neill, B.C. & Riahi, K. (2007) Probalistic temperature change projections and energy system implications of greenhouse gas emission scenarios. *Techn Forecasting & Social Change* 74, 936-961.

Kindermann G., M. Obersteiner, B. Sohngen, J. Sathaye, K. Andrasko, E. Rametsteiner, B. Schlamadinger, S. Wunder, and R. Beach (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. *PNAS*, July 29, vol. 105, no. 30, pp. 10302–10307

Kindermann, G.E., M. Obersteiner, E. Rametsteiner and I. McCallum (2006) Predicting the deforestation-trend under different-carbon prices, *Carbon Balance and Management*, 1:15, 17 p., doi:10.1186/1750-0680-1-15, http://www.cbmjournal.com/content/1/1/15

Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. (2003) Pollination of Coffea canephora in relation to local and regional agroforestry management. *Journal of Applied Ecology 40*, 827-845.

Klein, A.-M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. *Proc. R. Soc. B* 274, 303-313.

Kok, M.T.J., Bakkes, J.A., Eickhout, B., Manders, A.J.G., Oorschot, M.M.P. van, Vuuren, D.P. van, Wees, M. van (CAP-SD) and Westhoek, H.J. (2008) *Lessons from global environmental assessments*. PBL publication number 500135002. Netherlands Environmental Assessment Agency (PBL), Bilthoven, September 2008

Kremen, C. (2005) Managing ecosystem services: what do we need to know about their ecology? *Ecology Letters 8*, 468-479.

Kremen, C., Williams, N.M., Aizen, M.A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., Packer, L., Potts, S.G., Roulston, T., Steffan-Dewenter, I., Vazquez, D.P., Winfree, R., Adams, L., Crone, E.E., Greenleaf, S.S., Keitt, T.H., Klein, A.-M., Regetz, J. & Ricketts, T.H. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for effects of land-use change. *Ecology Letters 10*, 299-314.

Kucharik, C.J. & Twine, T.E. (2007) Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. *Agric and Forest Meteorol.* 146, 134-158.

Kucharik, C.J., & Brye, K.R. (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions or Wisconsin maize receiving varied amounts of Nitrogen fertilizer. *J. Environ. Qual.* 32, 247–268.

Kucharik, C.J., J.A. Foley, C. Delire, V.A. Fisher, M.T. Coe, J. Lenters, C. Young-Molling, N. Ramankutty, J.M. Norman, and S.T. Gower (2000). Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance and vegetation structure. *Global Biogeochemical Cycles* 14(3), 795-825.

Lamb, E.G., Bayne, E., Holloway, G., Schieck, J., Boutin, S., Herbers, J. & Haughland, D.L. (2009) Indices for monitoring biodiversity change: are some more effective than others? *Ecol Indic* 9, 432-444.

Lambin, E.F., Turner, B.L., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., Coomes, O.T., Dirzo, R., Fischer, G., Folke, C., George, P.S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E.F., Mortimore, M., Ramakrishnan, P.S., Richards, J.F., Skanes, H., Steffen, W., Stone, G.D., Svedin, U., Veldkamp, T.A., Vogel, C. & Xu, J. (2001) The causes of land-use and land-cover change: moving beyond the myths. *Global Environ Change 11*, 261-269.

Laurance, W. F., Cochrane, M. A., Bergen, S., Fearnside, P. M., Delamônica, P., Barber, C., d'Angelo, S., and Fernandes. T. (2001). The future of the Brazilian Amazon: development trends and deforestation. *Science* 291:438-439.

Layke, C. (2009, in prep.) Measuring Nature's Benefits: a status report and action agenda for improving Ecosystem Service Indicators. World resources Institute. Washington.

LeBauer, D.S. & Treseder, K.K. (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. *Ecology* 89, 371-379.

Leemans, R. & Eickhout, B. (2003). Analysing changes in ecosystems for different levels of climate change. OECD workshop on benefits of climate policy: improving information for policy makers.

Leemans, R., Eickhout, B., Strengers, B., Bouwman, L. & Schaeffer, M. (2002). The consequences of uncertainties in land use, climate and vegetation responses on the terrestrial carbon. Science in China, Ser. C, 45 (Supp.), 126.

Lett, C., Verley, P/, Mullon, C., Parada, C., Brochier, T., Penven, P. & Blanke, B. (2008). A Langrarian tool for modelling ichthyoplankton dynamics. *Environmental Modelling and Software - Short Communication*, 23: 1210-1214.

Lewandrowski, J., Darwin, R.F., Tsigas, M. & Raneses, A. (1999) Estimating cotss of protecting global ecosystem diversity. *Ecol Econ* 29, 111-125

Lexer, M.J. & Honniger, K. (2001) A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. *For Ecol Managem 144*, 43-65.

Li, R.-Q., Dong, M., Cui, J.-Y., Zhang, L.-L., Cui, Q.-G. & He, W.-M. (2007) Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. *Environ Monit Assess 128*, 503-510.

Luboski, R.N., Plantinga, A.J. & Stavins, R.N. (2006) Land-use change and carbon sinks : econometric estimation of the carbon sequestration supply function. *J Environ Econ Managem* 51, 135-152.

Lucht, W., Prentice, C., Myneni, R.B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W. & Smith, B. (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect, *Science*, *296*(5573), 1687–1689.

Ludwig, J. A., Coughenour, M.B., Liedliff, A.C. & Dyer, R. (2001) Modelling the resilience of Australian savanna systems to grazing impacts. *Environ Int.* 27, 167-172.

MacArthur, R.H. & Wilson. E. O. (1967) *The Theory of Island Biogeography*. Princeton University Press: Princeton, NJ.

May, R. M., J. H. Lawton, and N. E. Stork. 1995. *Assessing extinction rates*. Pages 1-24 in H. Lawton and R. M. May. *Extinction rates*. Oxford University Press, Oxford, UK.

McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S. (eds) (2001) *Climate change 2001: impacts, adaptation and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change (IPCC).* Cambridge University Press, Cambridge.

McGuire, A.D., Sitch, S., Clein, J.S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D.W., Meier, R.A., Melillo, J.M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L.J. & Wittenberg, U. (2001) Carbon Balance of the Terrestrial Biosphere in the Twentieth Century: Analyses of CO₂, Climate and Land Use Effects With Four Process-Based Ecosystem Models, *Global Biogeochem. Cycles* 15, 183–206.

Meadows D H, Meadows D L, Randers J, Behrens W W III (1972) *The limits to growth: a report for the Club of Rome's project on the predicament of mankind.* 2nd edn. 1974. Signet: New American Library, New York.

Metzger, M.J., Leemans, R. & Schröter, D. (2005) A multidisciplinary multi-scale framework for assessing vulnerabilities to global change. *Int J Appl Earth Observation Geoinformation* 7, 253-267.

Metzger, M.J., Rounsevell, M.D.A., Acosta-Michlik, L., Leemans, R. & Schröter, D. (2006) The vulnerability of ecosystem services to land use change. *Agriculture, Ecosystems & Environment 114*, 69-85.

Metzger, M.J., Schröter, D., Leemans, R. & Cramer, W. (2008) A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. *Regional Environmental Change 8*, 91-107.

Miles, L. and Kapos, V. (2008) Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation: Global Land-Use Implications, Science, **320**. (5882), 1454 – 1455.

Millennium Ecosystem Assessment (2003) Millennium Ecosystem Assessment Ecosystems and Human Well-being: A Framework for Assessment. World Resources Institute, Washington, DC.

Millennium Ecosystem Assessment (2005a) *Ecosystems and Human Well-being: General Synthesis*. World Resources Institute, Washington, DC.

Millennium Ecosystem Assessment (2005b) *Ecosystems and Human Well-being: Biodiversity Synthesis.* World Resources Institute, Washington, DC.

Millennium Ecosystem Assessment (2005c) *Ecosystems and human well-being, Volume 1: Current state and trends.* World Resources Institute, Washington, DC.

Millennium Ecosystem Assessment (2005d) *Millennium Ecosystem Assessment: Ecosystems and human well-being. Scenarios Assessment.* World Resources Institute, Washington, DC.

MNP (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Bilthoven, the Netherlands: Netherlands Environmental Assessment Agency.

Muetzelfeldt, R. (2003) Declarative modelling in ecological and environmental research. AVEC Papers—Available at: http://www.pik-potsdam.de/avec/decmod final8.pdf

Myers, N. (2003) Biodiversity Hotspots Revisited. *BioScience* 53: 916-917.

Myers, N., Mittermeier, R.A, Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. *Nature* 403: 853-858.

Naidoo, R. & Adamowics, W.L. (2006) Modelling the opportunity costs of conservation in transitional landscapes. *Conservation Biology* 20, 490-500

Naidoo, R. & Adamowics, W.L. (2005) Economic benefits of biodiversity exceed costs of conservation at an African rainforest reserve. *PNAS 102*, 16712-16716

Naidoo, R. & Ricketts, T.H. (2006) Mapping the economic costs and benefits of conservation. *PLoS Biol* 4:e360.

Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R.E., Lehner, B., Malcolm, T.R. & Ricketts, T.H. (2008) Global mapping of ecosystem services and conservation priorities. *PNAS 105*, 9495-9500.

Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D. R., Chan, K.M.A., Daily, G.C., Goldstein, J., Kareiva, P.M., Lonsdorf, E., Naidoo, R., Richketts, T.H. & Shaw, M.R. (2009a) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scale. *Frontiers in Ecology and Evolution* 7, 4-11.

Nelson, E., Polasky, S., Lewis, D.J., Plantinga, A.J., Lonsdorf, E., White, D., Bael, D. & Lawler, J.J. (2008) Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. *PNAS 105*, 9471-9476.

Nelson, K.C., Palmer, M.A., Pizzuto, J.E., Moglen, G.E., Angermeier, P.L., Hilderbrand, R.H., Dettinger, M. & Hayhoe, K. (2009b) Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. *Journal of Applied Ecology 46*, 154-163.

Nelson, G.C., Bennett, E., Berhe, A.A., Cassman, K., DeFries, R., Dietz, T., Dobermann, A., Dobson, A., Janetos, A., Levy, M., Marco, D., Nakicenovic, N., O'Neill, B., Norgaard, R., Petschel-Held, G., Ojima, D., Pingali, P., Watson, R., and Zurek, M. (2006) Anthropogenic drivers of ecosystem change: an overview. *Ecology and Society* **11**(2): 29. [Online] URL: http://www.ecologyandsociety.org/vol11/iss2/art29/

Netherlands Environmental Assessment Agency (2008a) Lessons from global environmental assessments. *PBL report number 500135002*.

Netherlands Environmental Assessment Agency (2008b) Environment for development – Policy lessons from global environmental assessments. *Report for UNEP. PBL report number* 500135003.

Nielsen, S.E., Bayne, E.M., Schieck, J., Herbers, J. & Boutin, S. (2007) A new method to estimate species and biodiversity intactness using empirically derived reference conditons. *Biol Conserv137*, 403-414.

Norgaard, R.B. & Jin, L. (2008) Trade and the governance of ecosystem services. *Ecol Econ* 66, 638-652

OECD (2008) OECD Environmental Outlook to 2030. OECD, Paris.

OECD (2006) Subsidy reform and sustainable development: economic, environmental and social aspects, OECD, Paris.

Ormerod, S.J. (2003) Restoration in applied ecology: editor's introduction. J Appl Ecol 40, 44-50

Paltsev, S., Forest, C., Frank, T., Jacoby, H., Reilly, J., Sokolov, A. & Webster, M. (2005) Uncertainty in emissions projections in the MIT Integrated Global System Model. *Geophys Res Abstr 7*, SREF-ID1607-7962/gra/EGU095-A-05471.

Parmesan, C. and Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42.

Parton, W.J., Ojima, D.S. & Schimel, D.S. (1994) Environmental change in grasslands: assessment using models. *Climatic Change* 28, 111-141.

Parton, W.J., Stewart, J.W.B. & Cole, C.V. (1988) Dynamics of C, N, P and S in grassland soils: a model. *Biogechem* 5, 109-131.

Pauly, D., Alder, J., Christensen, V., Tyedmers, P. and Watson, R. (2003) *The Future for Fisheries*. Science 302: 1359-1361.

Pauly, D., Christensen, V. & Walters, C. (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. *ICES Journal of Marine Science* 57, 697-706.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres, F.J. (1998) Fishing down marine food webs. *Science* 279: 860 - 863.

Pereira, H.M. & Cooper, H.D. (2005) Towards the global monitoring of biodiversity change. *Trends in Eclogy and Evolution 21*, 123-129.

Petit, S., Firbank, L., Wyatt, B. & Howard, D. (2001) MIRABEL: Models foer integrated review and assessment of biodiversity in European landscapes. *Ambio 30*, 81-88.

Pimm, S., Raven, P., Peterson, A., Sekercioğlu, C.H. & Ehrlich, P.R. (2006) Human impacts in the rates of recent, present and future bird extinctions. *PNAS 103*, 10941-10946.

Pimm, S.L., Russell, G.J., Gittleman, J.L. & Brooks, T.M. (1995) The future of biodiversity. *Science* 269, 347-350.

Polovina, J.J. (1984a) Model of a coral reef ecosystem: I. The ECOPATH model and its application to French Frigate Shoals. *Coral Reefs* 3, 1–11.

Polovina, J.J. (1984b) An overview of the Ecopath model. Fishbyte 2, 5-7.

Pontius, R.G.Jr., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Ditzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C.D., McConnell, W., Mohd Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Ngoc Trung, T., Veldkamp, A.T. & Verburg, P.H. (2007) Comparing the input, output, and validation maps for several models of land change. *Annals of Regional Science* 42, 11-37.

Potting, J and Bakkes, J (eds.) (2004) *The GEO-3 Scenarios 2002–2032. Quantification and Analysis of Environmental Impacts.* UNEP/RIVM: Nairobi and Bilthoven, The Netherlands.

Prinn, R., Jacoby, H., Sokolov, A., Wang, C., Xiao, X., Yang, Z., Eckhaus, R., Stone, P., Ellerman, D., Melillo, J., Fitzmaurice, J., Kicklighter, D., Holian, G. & Liu, Y. (1999) Integrated global system model for climate policy assessment: feedbacks and sensityivity studies. *Climtatic Change* 41, 469-546.

Pulido-Velazquez, M., Andreu, J., Sahuquillo, A. & Pulido-Velazquez, D. (2008) Hydroeconomic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. *Ecol Econ 66*, 51-65.

Pywell, R.F., Bullock, J.M., Roy, D.B., Warman, L., Walker, K.J., Rothery, P. (2003) Plant traits as predictors of performance in ecological restoration. *J Appl Ecol* 40, 65-77

Raskin, P and Kemp-Benedict, E (2002) GEO Scenario Framework Background Paper for UNEP's Third Global Environmental Outlook Report. UNEP, Nairobi.

Reilly, J., Stone, P.H., Forest, C., Webster, M.D., Jacoby, H.D., Prinn, R. (2001) Climate change: uncertainty and climate change assessments. *Science 293*, 430–433.

Riahi, K. & Röhrl, A. (2000) Greenhouse gas emissions in a dynamics-as-usual scenrio of economic and energy development. *Techn Forecasting & Social Change 63*, 175-205.

Rosenzweig, M.L (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge.

Rosegrant, M.W., Ringler, C., Msangi, S., Sulser, T.B., Zhu, T. & Cline, S.A. (2005) International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT-WATER): Model Description (available at www.ifpri.org/themes/impact/impact/atter.pdf)

Rotmans, J. (1990) IMAGE. Climatic Change 16, 331-356.

Roy, P S and Tomar, S (2000) Biodiversity characterization at landscape level using geospatial modelling technique. *Biol Conserv* 95, 95-109. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Samwald E, Huenneke KF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–74.

Sandhu, H.S., Wratten, S.D., Cullen, R. & Case, B. (2008) The future of farming: the value of ecosystem services in conventional and organic arable land. An experimental approach. *Ecol Econom* 64, 835-848.

Sathaye, J., Makundi, W., Dale, L., Chan, P., Andrasko, K., (2006) GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach. *The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue*, 95-124.

Sayer, J., Chokkalingham, U. & Poulsen, J. (2004) The restoration of forest biodiversity and ecological values. *For Ecol Managem 201*, 3-11

sCBD (Secretariat of the Convention on Biological Diversity) (2006) *Global Biodiversity Outlook* 2. Montreal, 81 + vii pages.

sCBD and MNP (Secretariat of the Convention on Biological Diversity and Netherlands Environmental Assessment Agency) (2007). *Cross-roads of Life on Earth — Exploring means to meet the 2010 Biodiversity Target. Solution oriented scenarios for Global Biodiversity Outlook 2.* Secretariat of the Convention on Biological Diversity, Montreal, Technical Series no. 31, 90 pages.

Schaphoff, S. Lucht, W., Gerten, D., Sitch, S., Cramer, W. and Prentice, I.C. (2006) Terrestrial biosphere carbon storage under alternative climate projections, *Clim. Change*, 74(1-3), 97–122.

Scholes, R.J. and Biggs, R. (2005) A biodiversity intactness index. Nature 434, 45-49.

Schreinemachers, P., Berger, T. & Aune, J.B. (2007) Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach. *Ecol Econom* 64, 387-401.

Schüpbach, B., Zgraggen, K. & Szerencsits, E. (2008) Incentives for low-input land-use types and their influence on the attractiveness of landscapes. *J Environ Managem* 89, 222-233.

Sea Around Us Project (2007) (www.seaaroundus.org) [Accessed 16 June 2009]

Seidl, R., Lexer, M.J., Jäger, D., Hönninger, K., 2005. Evaluating the accuracy and generality of a hybrid patch model. *Tree Phys.* 25, 939–951.

Seidl, R., Rammer, W., Jäger, D., Currie, W. S. & Lexer, M.J. (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of Multi-purpose forestry in Austria. *For Ecol Managem 248*, 64-79.

Seidl, R., Rammer, W., Lasch, P., Badeck, F.-W. & Lexer, M.J. (2008) Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. *Silva Fennica* 42, 369-386.

Silvertown, J, Bliss, P M and Freeland, J (2009) Community genetics: resource addition has opposing effects on genetic and species diversity in a 150-year experiment. *Ecol Letters 12*, 165-170.

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S.L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C.D., Prentice, I.C. & Woodward, F.I. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) *Global Change Biology 14*, 2015-2039.

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeay, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K & Venevsky, S. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. *Glob Change Biol* 9, 161-185.

Sitch, S., Brovkin, V., von Bloh, W., van Vuuren, D., B. Eickhout, B. & Ganopolski, A. (2005), Impacts of future land cover changes on atmospheric CO2 and climate, *Global Biogeochem. Cycles*, *19*, *GB2013*.

Smith, R.S., Shiel, R. S., Bardgett, R.D., Millward, D., Corkhill, P., Rolph, G., Hobbs, P.J. & Peacock, S. (2003) Soil microbial community, fertility, vegetation and diversity as targets in the restoration management of a meadow grassland. *J Appl Ecol* 40, 51-64

Soares-Filho, B.S., Nepstad, D.C., Curran, L.M., Coutinho Cerqueria, G., Garcia, R.A., Azevedo Ramos, C., Voll, E., McDonald, A., Lefebvre, P. & Schlesinger, P. (2006) Modelling conservation in the Amazon basin. *Nature* 440: 520-523.

Sokolov, A.P., Schlosser, C.A., Dutkiewicz, S., Paltsev, S., Kicklighter, D.W., Jacoby, H.D., Prinn, R.G., Forest, C.E., Reilly, J., Wang, C., Felzer, B., Sarofim, M.C., Scott, J., Stone, P.H., Melillo, J.M. & Cohen, J. (2005) The MIT Integrated Global System Model (IGSM) Version 2: Model description and baseline evaluation. *MIT Joint Program on the Science and Policy of Global change, Report No. 124*.

Stehfest, E., Bouwman, L., van Vuuren, D.P., den Elzen, M.G.J., Eickhout, B. & Kabat, P. (in press) Climate benefits of changing diet. *Climatic Change*, DOI 10.1007/s10584-008-9534-6.

Stockman, A.K., Beamer, D.A. & Bond, J.E. (2006) An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. *Diversity Distrib 12*, 81-89.

Stockwell, D.R.B. (2006) Improving ecological niche models by data mining large environmental datasets for surrogate models. *Ecol Mod 192*, 188-196.

Stockwell, D. & Peters, D. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. *International Journal of Geographical Information Science 13*, 143–158.

Stockwell, D.R.B. & Peterson, A.T. (2002) Effects of sample size on accuracy of species distribution models. *Ecological Modelling 148*, 1–13.

Sumaila, U.R. and Suatoni, L. (2006) Economic benefits of rebuilding US Ocean Fish Populations. *Fisheries Centre Working Paper* No. 2006-04, The University of British Columbia, Vancouver.

TEEB (2008) The Economics of Ecosystems and Biodiversity: An Interim Report (2008) European Community.

Sutton, P. C. & Costanza, R. (2002) Global estimates of market and nonmarket values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. *Ecol Econ 41*, 509-527.

Swallow, B.M., Sang, J.K., Nyabenge, M., Bundotich, D.K., Duraiappah, A.K. & Yatich, T.B. (2009) Tradeoffs, synergies and traps among ecosystem services in the Lake Victoria basin of East Africa. *Environ. Sci. & Policy 12*, 504-519.

Swift, M.J., Izac, A.-M.N. & van Noordwijk, M. (2004) Biodiversity and ecosystem services in agricultural landscapes – are we asking the right questions? *Agriculture, Ecosystems & Environment 104*, 113-134.

ten Brink, B.J.E (2006) *Indicators as communication tools: an evolution towards composite indicators.* ALTER-Net WPR2-2006-D3b, ECNC, Tilburg.

ten Brink, B.J.E. (2000). *Biodiversity indicators for the OECD Environmental Outlook and Strategy; a feasibility study.* RIVM report 402001014. Bilthoven.

ten Brink, B. R. Alkemade, M. Bakkenes, J. Clement, B. Eickhout, L. Fish, M. de Heer, T. Kram, T. Manders, H. van Meijl, L. Miles, C. Nellemann, I. Lysenko, M. van Oorschot, F. Smout, A. Tabeau, D. van Vuuren, H. Westhoek (2007) *Cross-roads of Life on Earth: Exploring means to meet the 2010 Biodiversity Target. Solution-oriented scenarios for Global Biodiversity Outlook 2.*CBD Technical Series No. 31, CBD, Montreal.

ten Brink P., S Bassi, S Gantioler & M Kettunen, M Rayment & V Foo, I Bräuer, H Gerdes & N Stupak, L Braat, A Markandya, A Chiabai & P Nunes, B ten Brink & M van Oorschot (2009, in prep.) Further Developing Assumptions on Monetary Valuation of Biodiversity Cost Of Policy Inaction (COPI). IEEP, Brussels.

ten Brink, P., C. Miller, M. Kettunen, K. Ramsak, A. Farmer, P. Hjerp and J. Anderson (2008) *Critical thresholds, evaluation and regional development*. European Environment 18, 81-95 (2008).

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Siqueira, M.F.d., Graigner, A., Hannah, L., Hughes, L., Huntley, B., Jaarsveld, A.S.v., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Philips, O.L. and Williams, S.E. (2004) Extinction risk from climate change. Nature 427, 145-148.

Troy, A. & Wilson, M.A. (2006) Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. *Ecol Econom* 60, 435-449. (+erratum)

Tscharntke, T., Klein, A.-M., Kruess, A., Steffan-Dewenter, I. & Thiess, C. (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem services management. *Ecology Letters* 8, 857-874.

Tschirhart, J. (2008). General Equilibrium of an Ecosystem. *Journal of Theoretical Biology*, 203, 13-32.

Turner, W.R., Brandon, K., Brooks, T.M., Costanza, R., Da Fonseca, G.A.B. & Portela, R. (2007) Global conservation of biodiversity and ecosystem services. *BioScience* 57, 868-873.

Twine, T.E. & Kucharik, C.J. (2008) Evaluating a terrestrial ecosystem model with satellite information of greenness. *J Geophys Res 113*, G03027.

Uljee, I., Engelen, G. & White, R. (1999) Integral Assessment Module for Coastal Zone Management. RAMCO 2.0 User Guide. Research Institute for Knowledge Systems (RIKS Geo). Available at: http://www.riks.nl/RiksGeo/projects/ramco/RamCo2.pdf.

UNEP (2007) *Global Environmental Outlook 4: environment for development*. United Nations Environmental Programme, Nairobi, Kenya, 540 pp.

UNEP (2006) Marine and Coastal Ecosystems & Human Well-being: A synthesis report based on the findings of the Millennium Ecosystem Assessment. UNEP. 76 pp.

van Jaarsveld A.S., Biggs, R., Scholes, R.J., Bohensky, E., Reyers, B., Lynam, T., Musvoto, C. & Fabricius, C. (2005) Measuring conditions and trends in ecosystem services at multiple scales: The Southern African Millennium Ecosystem Assessment (SAfMA) experience. *Philos Trans R Soc London Ser B 360*:425–441.

van Veen, M.P., B. J.E ten Brink, L.C. Braat & Th.C.P. Melman (2008) Halting Biodiversity loss in the Netherlands: evaluation of progress. Netherlands Environmental Assessment Agency / Alterra, Bilthoven/ Wageningen.

van Vuuren, D. P., O. E. Sala, and H. M. Pereira. 2006. The future of vascular plant diversity under four global scenarios. Ecology and Society 11(2): 25. [online] URL: http://www.ecologyandsociety.org/vol11/iss2/art25/ Research, part of a Special Feature on Scenarios of global ecosystem services The Future of Vascular Plant Diversity Under Four Global Scenarios

van Wilgen, B W, Reyers, B, Le Maitre, D C, Richardson, D M and Schonegevel, L (2008) A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. *J Environ Managem* 89, 336-349

Venter, O., Meijaard, E., Possingham, H., Dennis, R., Sheil, D. Wich, S., Hovani, L. and Wilson, K. (2009) Carbon payments as a safeguard for threatened tropical mammals Conservation Letters 2:123-129.

Verburg, P.H., Soepboer, W., Veldkamp, A. Limpiada, R. Espaldon, V., Sharifah Mastura S.A. (2002) Modeling the Spatial Dynamics of Regional Land Use: the CLUE-S Model. *Environmental Management 30*(3), 391–405.

Videira, N., Antunes, P. & Santos, R. (2009) Scoping river basin management issues with participatory modelling: the Baixo Guadiana experience. *Ecol Econom.* 68, 965-978.

Voinov, A., Costanza, R., Maxwell, T. &. Vladich, H. (2007) Patuxent Landscape Model. III. Model calibration. *Water Resources 34*, 372-384.

Vörösmarty, C.J., Federer, C.A. & Schloss, A.L. (1989) Potential evaporation functions compared on US watersheds : possible implications for global-scale water balance and terrestrial ecosystem modelling. *J Hydrol* 207, 147-169.

Vörösmarty, C.J., Green, P., Salisbury, J. & Lammers, R.B. (2000) Global water resources : vulnerabilitis from climate change and population growth. *Science* 289, 284-288.

Wackernagel M, Schulz NB, Deumling D, Callejas Linares A, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N, Norgaard R, Randers J. 2002. Tracking the ecological overshoot of the human economy. PNAS 99:9266–71.

Walters, C., Christensen, V. & Pauly, D. (1997) Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. *Reviews in Fish Biology and Fisheries* 7, 139-172.

Walters, C., Pauly, D. & Christensen, V. (1999) Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. *Ecosystems 2*, 539-554.

Walters, C., Pauly, D., Christensen, V. & Kitchell, J.F. (2000) Representing density dependent consequences of life history strategies in aquatic ecosystems: Ecosim II. *Ecosystems 3*, 70-83.

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, J.M., Hoegh-Guldberg, O. and Bairlein, F. (2002) Ecological responses to recent climate change. Nature 416, 389-395.

Watson-Jones, S J, Maxted, N and Ford-Lloyd, B V (2006) Population baseline data for monitoring genetic diversity loss for 2010: a case study for Brassica species in the UK. *Biol Conserv* 132, 490-499.

Werners, S.E. and R. Boumans (2004) Simulating global feedbacks between Sea Level Rise, Water for Agriculture and the complex Socio-economic Development of the IPCC Scenarios, In: *Proceedings Environmental Modelling and Software Society Conference: Complexity and Integrated Resources Management* (IEMSS2004), Osnabrück, June 2004 (http://www.iemss.org/iemss2004/sessions/../pdf/scenario/wernsimu.pdf)

Western, D., Russell, S. & Cuthill, I. (2009) The status of wildlife in protected areas compared to non-protected areas of Kenya. PLOSone 4 (7) e6140

Westhoek, H.J., van den Berg, M. & Bakkes, J.A. (2006) Scenario development to explore the future of Europe's rural areas. *Agriculture, Ecosystems and Environment 114*, 7-20.

Woodward, R.T. & Wui, Y.-S. (2001) The economic value of wetland services: a metaanalysis. *Ecol Econ* 37, 257-280

World Water Assessment Programme (2009) *The United Nations World Water Development Report 3: Water in a Changing World.* Paris: UNESCO, and London: Earthscan.

Yang, J., Reichert, P., Abbaspour, K.C., Xia, J. & Yang, H. (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. *J Hydrol 358*, 1-23.

Xu, J., Sharma, R., Fang, J. & Xu, Y. (2008) Critical linkages between land-use transition and human health in the Himalayan region. *Environ Internat* 34, 239-247.

SCENARIOS AND MODELS FOR EXPLORING FUTURE TRENDS OF BIODIVERSITY AND ECOSYSTEM SERVICES CHANGES

FINAL APPROVED REPORT 27th August 2009

1 APP AVAILA	ENDICES OF CHAPTER 2: IDENTIFICATION AND OVERVIEV BLE MODELS	V OF 3
11 G	maral description of all selected models	3
111	Integrated Assessment Models	
1.1.1	Scenario-building tools	5 15
1.1.2	Economic models	13 17
111.5	Land-use models	17
11.1.1	Biogeochemical models	20
116	Hydrological models	28
117	Biodiversity models	30
1.1.8	Ocean Models	34
1.1.9	Regional models/assessments	55
1.2 Ca	in the model results be interpreted in terms of ecosystem goods and service	es? 61
1.2.1	Integrated assessment models	61
1.2.2	Economic models, scenario-building tools, IMPACT-WATER and CLUE	62
1.2.3	Biogeochemical models	63
1.2.4	Hydrological models	64
1.2.5	Biodiversity models	64
7.1.6 C	cean models I	65
1.2.7	Ocean models II	67
1.2.8	Regional models/assessments	70
1.3 Us	ability of selected models for TEEB	73
1.3.1	Integrated assessment models	73
1.3.2	Economic models, scenario building tools and others	77
1.3.3	Biogeochemical models	79
1.3.4	Hydrological models	81
1.3.5	Biodiversity models	82
1.3.6	Ocean models I	83
1.3.7	Ocean models II	87
1.3.8	Regional models/assessments	92
1.4 De	scription of selected scenarios	94
1.5 Sc	enario summary with information relevant for TEEB	116
1.6 Su	mmary of models with respect to drivers, pressures and impacts	117
1.6.1	Integrated Assessment Models	117
1.6.2	Economic models, scenario-building tools, IMPACT-WATER and CLUE	119
1.6.3	Biogeochemical models	120
1.6.4	Hydrological models	122
1.6.5	Biodiversity models	123
1.6.6	Ocean models I	124

1	.6.7	Ocean model II	
1	.6.8	Regional models/asssessments	
2 FO	APP R TH 134	ENDICES OF CHAPTER 3: OVERVIEW OF RESULTS FROM E LOSS OF BIODIVERSITY AND ECOSYSTEMS AND THEIR	I MODELS SERVICES
2.1	Li	st of relevant projections and model results made in the assessment	
2.2 scen	Pr narios	ojections of biodiversity and ecosystems services under different	assessment 137
2.3 use	Tł d in t	ne most important assumptions and examples of different categories of he assessments	of scenarios 147
3 AS	APP SUMI	ENDICES FOR CHAPTER 4: ASSESSMENT OF IMPACT PTIONS	OF KEY
3.1	Те	errestrial Models	
3.2	М	arine Models	
4	APP	ENDICES TO CHAPTER 5: WORKSHOP	
4.1	W	orkshop Programe	
4.2	At	tendance List	

1 APPENDICES OF CHAPTER 2: Identification and Overview of Available Models

1.1 General description of all selected models

1.1.1 Integrated Assessment Models

Model name	AIM
Full model name	Asian Pacific Integrated Model
Model type	integrated assessment model
Subtype	
Thematic coverage	effects of policies on climate change and resource supply
Input (key drivers	socio-economic trends and governmental policies
and pressures)	5
Output (key	energy consumption, land use change affecting water supply, vegetation changes
variables)	(agriculture, forestry production), human health (malaria spread)
Geographical	9 regions : USA, Western Europe OECD and Canada, Pacific OECD, Eastern Europe and
coverage and	Former Soviet Union, China and Central Planned Asia, South and East Asia, Middle East,
resolution	Africa, Middle and South America (focussed on Asian-Pacific region, but linked to a
	global model), resultion: 5° by 5°
Temporal	from 1990 to 2100, 5 year time steps until 2030 (+2050, 2075, 2100)
coverage and	
resolution	
Analytical	Dynamic systems model
technique	
Model developers	National Institute for Environmental Studies, Japan
and/or owners	
Model	1st version in 1994, latest update website: feb 2008
development	
history	
Target	AIM was selected as reference model in the Special Report on Emission Scenarios
Group/users	(SRES) and in Third Assessment Report (TAR) both of Intergovernmental Panel on
-	Climate Change (IPCC) and also in the Global Environment Outlook (GEO) of United
	Nations Environmental Program (UNEP). AIM simulation results were used by many
	other international organizations including OECD, ESCAP, ADB, UNU, and WWF. AIM
	can also be applied to other issues, such as local air pollution issues, acid rain problems,
	forest management policies and other energy, agricultural and water resource
	management problems. AIM was also used in the GEO assessments.
Calibration	Not available
Validation	Not available
Uncertainty	Not available
analysis	
Key reference	Kainuma et al., (2004), Kainuma et al., (2002; http://www-
	iam.nies.go.jp/aim/book/clim_pol_assess.htm)
Level of	Submodels are: the greenhouse gas emission model (AIM/emission), the global climate
integration	change model (AIM/climate), and the climate change impact model (AIM/impact).
	Estimates greenhouse gas emissions and assesses policy options to reduce them, predicts
	changes in global temperatures and effects on natural environments and socio-economy;
	integrates bottom-up national modules with top-down global modules, feedbacks between
	the three modules; country level models are linked to 'rest of the world'
Scenarios used	SRES, GEO-scenarios
Links to other	AIM has been used together with IMAGE, WaterGAP, Polestar and EwE/EcoOcean in
models	the IPCC and GEO-4 assessment.
Ease of	Not available for download
use/accessibility	
Website	http://www-iam.nies.go.jp/aim/index.htm

Model name	GUMBO
Full model name	global unified metamodel of the biosphere
Model type	integrated assessment model
Subtype	
Thematic coverage	complex, dynamic interlinkages between social, economic and biophysical systems on
	a global scale, focusing on ecosystem goods and services and their contribution to
	sustaining human welfare
Input (key drivers	Human population and GWP (economic goods and services) changes (economic
and pressues)	investments, consumption)
Output (key	global temperature, atmospheric carbon, sealevel, water, fossil and alternative energy
variables)	consumption, area of different land covers, knowledge, human, built and social capital,
	physical and monetary values for 11 ecosystem services, per capita food and welfare
Geographical	global, 11 biomes globally aggregated, not spatially explicit
coverage and	
resolution	
Temporal coverage	Base year: 2000, projections until 2100, annual time steps, historical data since 1900
and resolution	
Analytical technique	dynamic systems model, meta-model (GUMBO relationships are base don outputs of
	more complex and computational intense models)
Model developers	R. Costanza & R. Boumans, National Center for Ecological Analysis and Synthesis
and/or owners	(NCEAS) in Santa Barbara, CA
Model development	first published: 2002, integrated into MIMES, modeling software: STELLA
history	
Target Group/users	Main objective in creating the GUMBO model was not to accurately predict the future,
	but to provide simulation capabilities and a knowledge base to facilitate integrated
	participation in modeling. There are many (>100) internation collaborators.
Calibration	Historical callibration with time series from 1900/1950 to 2000 for 14 key variables
	(out of 930, of which: global temperatures and atmospheric carbon content) for which
	quantitative time-series data was available produced an average R2 of 0.922.
Validation	Not available
Uncertainty analysis	Not available
Key reference	Boumans et al., 2002, Werners et al., 2004, Costanza et al., 2007
Level of integration	Both ecological and socioeconomic changes are endogenous to the model, with a
	pronounced emphasis on interactions and feedbacks between the two. Dyamic feedback
	between human technology, economic production, welfare and ecosystem services.

	Medular to simulate each an and metainst flower through the Atomeralism
	Lithosphere Hydrosphere and Biosphere of the global system Social and economic
	dynamics are simulated within the Anthronosphere. CUMBO links these five spheres
	aynamics are simulated within the Anthroposphere. OUNDO miks these five spheres
	Limited degree of substitutebility between network and social human and built conital
T in her to oth on models	CUMPO is a matemadal which uses output from complex alabel models as input
Links to other models	(which models are used uses not anosified)
S	(which models are used, was not specified).
Scenarios used	MIMES/GUMBO, SKES
Ease of	The model can be downloaded and run on the average PC to allow users to explore for
use/accessibility	themselves the complex dynamics of the system and the full range of policy
	assumptions and scenarios. Commerical and consultancy uses have to be coordinated
	with developers/University of Vermont.
Website	http://ecoinformatics.uvm.edu/projects/the-gumbo-model.html
Comments/remarks	The current version of the model contains 234 state variables, 930 variables in total,
	and 1715 parameters (Boumans et al., 2002)
Model structure	Solar
	Energy GUMBO (Global Unified Model of the BiOspher
	Natural Capital Human-
	Atmosphere 11 Biomes (includes Built Capital
	Human Capital, and Social Capital
	Ecosystem Sorvices
	Anthropo-
	Hydrosphere Biosphere Human sphere
	Litnosphere
	<u> </u>
	From: Boumans R. R. Costanza I Farley M. A. Wilson R. Portala I Potmans F. Villa and M.
	Grasso 2002 Modeling the Dynamics of the Integrated Earth System and the Value of Global
	Ecosystem Services Using the GUMBO Model. <i>Ecological Economics</i> 41: 529-560
	and press of the component and prover and provident and the second

Model name	IFs
Full model name	International Futures simulator
Model type	integrated assessment model
Subtype	
Thematic coverage	climate change, energy, agriculture, demography, economy, political and others, possible to add: education, human well-being including poverty
Input (key drivers and pressures)	Current situation describing demography, economic, agricultural, energy, socio-political, international political, environmental situation. The relationship functions between and within modules can be altered, depending on scenario assumption
Output (key variables)	Future situation describing demography, economic, agricultural, energy, socio-political, international political, environmental situation.
Geographical	Global (with details for 182 regions/countries), not spatially explicit
coverage and	
resolution	
Temporal coverage	Base year: 2000, projections until 2100 with annual time steps
and resolution	
Analytical	dynamic systems model (partial equilibrium modelling and multiple agent approaches),
technique	economic model: CGE

Model developers	Barry Hughes, Graduate school of international studies University of Denver. Model
and/or owners	development is supported by a range of different foundations and funding sources.
Model development	1st version: 1980, current version: 2006
history	
Target Group/users	Ifs began as an educational tool and is mainly used for educational purposes. The model
	is increasingly being used in policy analysis and international assessments (e.g. UNEP).
Calibration	Initialized with data primarily from the 1995-2005 period and a very large data
	associated data base (nearly 1000 series) from a wide range of sources
Validation	runs of the model from 1960 through 2000 have been compared with data series from the
	same sources for key model variables
Uncertainty	Not available
analysis	
Key reference	Hughes & Hillebrand, 2006
Level of integration	The overall model incorporates different sub-models, including the Population sub-
	model, the Economic sub-model, the Agricultural sub-model, the Educational sub-model,
	the Energy sub-model, the Socio-Political sub-model, the International Political sub-
	model, the Environmental sub-model, the Technology sub-model, and the Health sub-
	model.
Links to other	unkown
Seconomics used	Includes own scenario building tool
Foco of	Ease of use is high No special permission is needed. Model is available online:
use/accessibility	www.ifs.du.edu
Website	http://www.ifs.du.edu/
Comments/remarks	Description conjed from EEA 2008
Model structure	
Wibuci su ucture	
	Socio-Political
	Government Conflict/Cooperation
	Expenditures Stability/Instability
	Mortalitiy
	Fertility Income
	Population \longleftrightarrow Economic Labor
	Fred
	Demand Demand, Supply,
	Prices, Investment
	Agriculture Energy
	Land Use, Efficiencies Resource Use,
	Water Carbon Production
	are examples Environmental
	from much Technology Resources and
	larger set Quality April 2008
	Figure 2 The modules of International Futures (IFs)
	1

Model name	IGSM
Full model name	integrated global system model

Model type	integrated assessment model
Subtype	
Thematic coverage	economics, climate change and ecosystems
Input (key drivers pressures)	capital, labour, land, fossil energy reserves
Output (key variables)	emission greenhouse gases, temperature, precipitation, sea level rise
Geographical	global, 16 regions with special studies on European countries, 0.5° by 0.5° to 4° by 4°
coverage and	grid, depending on submodel used for the biogeochemical part
resolution	
Temporal coverage	time steps: 10 minutes (atmosphere) to 5 years (policy analysis)
and resolution	
Analytical	dynamic system model (economy: general equilibrium)
technique	
Model developers	Massachusetts Institute of Technology
and/or owners	
Model development	1st version: 1999, current version: IGSM 2.3 (2005)
history	
Target Group/users	IGSM is used to study causes of global climate change and potential social and
	environmental consequences, and the effects on different policies (carbon tax, biofuel
	programm; US, EU).
Calibration	Unknown
Validation	unknown
Uncertainty	Prinn et al., 1999, Paltsev et al., 2005
analysis	
Key reference	Prinn et al, 1999, Sokolov et al., 2005
	http://giobaicnange.mit.edu/pubs/abstract.pnp?publication_id=696,
Level of integration	Different submodels including TEM (carbon cycle) CLM (land use energy) NEM
Level of integration	(emissions) FPPA(economics energy); emission model a counled atmosphere-ocean-
	land surface model with feedbacks of climate change on human activities
Links to other	economic model built on GTAP dataset
models	
Scenarios used	
Ease of	Model not available
use/accessibility	
Website	http://globalchange.mit.edu/igsm/
Model structure	HUMAN ACTINITY (CODA)
	agriculture & national and/or regional economic sea
	ecosystems: net carbon development, emissions, land use change
	exchange, net Land use EXAMPLES OF MODEL OUTPUTS
	productivity health CO ₂ , CH ₄ , CO, N ₂ O, NO ₂ , SO ₂ , NH ₃ , Change GDP growth,
	energy use, policy costs,
	EARTH SYSTEM agriculture and bealth impacts
	coupled ocean, atmosphere, and land global mean
	2-Dimensional Chemical Air Pollution temperature and
	solar Processes Processes precipitation, sea level rise,
	sunlight, water cycles, energy & momentum transfers, air & sea temperatures, CO ₂ CH ₂ , N ₂ O, nutrients, greenhouse gas
	pollutants, soil properties, surface albedo,
	Ind CO ₂ uptake, vegetation change
	volcanic OCEAN LAND carbon, net primary productivity,
	3-Dimensional Dynamics, Water & Energy Budgets Biological, Chemical & (CLM) from ecosystems,
	Ice Processes Biogeochemical Processes permafrost area
	(mr/gcm) (TEM & NEM)
	Figure 1. Schematic of the MIT Integrated Global System Model Version 2 (IGSM2).

Model name	IIASA Integrated Assessment Modeling Framework
	Including IIASA-ECS modelling and IIASA/FOR modelling cluster
Full model name	
Model type	integrated assessment model
Subtype	
Thematic coverage	energy system planning, energy policy analysis, and scenario development, economics, climate change, agriculture
Input (key drivers	population development, economic development, technological change, environmental
and pressures)	policies, energy intensity
Output (key	greenhouse gas emission, temperature change, development of least-cost mitigation
variables)	scenarios, water supply and demand (water scarcity index), crop production
Geographical	
coverage and	giobal, 0.5 gild
Temporal coverage	10 year time steps
and resolution	To year time steps
Analytical	dynamic system modelling
technique	
Model developers	IIASA (International Institute for Applied Systems Analysis)
and/or owners	
Model development	UNIX based system, new models and modules are constantly developed and integrated into
history	the existing framework
Target Group/users	In 1998, IIASA-ECS completed a five-year joint study with the World Energy Council
	(WEC). The study analyzed six alternative global energy scenarios extending to 2100. The
	MESSAGE model is a systems engineering optimization model used for medium- to long-
	term energy system planning, energy policy analysis, and scenario development [24]. The
	from resource extraction imports and experts conversion transport and distribution to the
	noni resource extraction, imports and exports, conversion, italisport, and distribution to the provision of energy end-use services, such as light space conditioning industrial production
	provision of energy end-use services, such as right, space conditioning, industrial production
	The IIASA/FOR modelling cluster focusses on forestry, carbon sequetration and biofuel
	production.
Calibration	Global statistics (FAO) were used for calibration of different model components.
Validation	Different (sub-) models have been validated and applied in many studies on national, regional
	and global scales.
Uncertainty	Böttcher et al., 2008
analysis	
Key reference	Riahi & Röhrl, 2000, Keppo et al., 2007, Fischer et al., 2005, Fischer et al., 2007
Level of integration	The IIASA integrated modeling approach consists of several models that represent two
	different model suites: First the ECS-model cluster with scenario-generator, MESSAGE-
	(agricultural economic) DIMA (Dynamic Integrated Model of Forestry and Alternative Land
	Use) and MAGICC (climate change indusced by greenhouse gas emissions) those models
	are linked (including some feedback loops). The second group with CHARM (runoff).
	RAINS (air pollution), EPIC (agriculture), FORMICA (regional forest management), G4M
	(forestry), GLOBIOM (trade and competiton), BEWHERE (optimal land allocation)
	constitutes the FOR modelling cluster.
Links to other	Different sub-models have links to other IIASA models. The agro-ecologic model AEZ
models	(agro-ecological zone) is used by FAO to analyse present and future land resources. CAPRI
	is used for the estimation of agricultural demand.
Scenarios used	SRES, climate scenarios (HADCM3, ECHAM, CSIRO, CGCM2, NCAR-PCM) Fischer et
	al., 2005
Ease of	Nodels not available online
use/accessibility Wobsite	http://www.jiaco.ac.ot/Deceareh/ECS/decs/models.html
Model structure	The II $\Delta S \Delta_{\text{FCS}}$ modelling cluster
mouel su ucture	

SCENARIOS AND MODELS - FINAL REPORT APPENDICES

Model name	IMAGE
Full model name	Integrated model to assess the global environment
Model type	integrated assessment model
Subtype	
Thematic coverage	Demography, world economy, agriculture, energy supply and demand, emissions,
	land allocation, carbon, nitrogen and water cycle, climate change, land degradation
Input (key drivers	Population projections (from UN, IIASA, or from PHOENIX), economic drivers,
and pressures)	technological development, policy options
Output (key	concentrations, emissions, energy, climate, effects of climate, land use, food
variables)	production and demand
Geographical	Global (with details for 24 world regions (energy, trade emissions)) or 0.5° x 0.5°
coverage and	grid (land cover, land use)

resolution	
Temporal coverage	time period covered: 1970-2100 (historical data from 1900), time steps: from
and resolution	monthly to 5 years
Analytical technique	dynamic systems model with different sub-modules
Model developers	Netherlands Environmental Assessment Agency
and/or owners	
Model development	1st version: 1990, latest version: 2.4, software: FORTRAN/UNIX
history	
Target Group/users	Designed to support science-policy dialoges, for scenario-development (for IPCC, OECD, MA).
Calibration	IMAGE is calibrated against historical data from 1765-2000 for carbon and climate, and data from 1970-2000 for energy and agriculture. These data were derived from large international databases (<i>e.g.</i> FAO).
Validation	Submodels have been validated.
Uncertainty analysis	To date, no comprehensive and systematic exploration has been performed of key
	uncertainties and how they are propagated throughout the entire IMAGE model to
	influence the final results. What has been done in many instances is to look at
	uncertainties in underlying data and model formulations in sub-systems of the
	overall framework, thus providing partial sensitivity analyses for IMAGE 2.4
	Iramework. Sensitivity analysis: Rolmans 1990.
	http://www.rivm.nl/bibliotheel/rapporten/500110003.ndf
Kon roforonao	http://www.nvin.in/bioindicek/iapporen/2006/Integrated modelling of global on vironmontale
Key reference	http://www.poi.in/en/publications/2000/integratedinodeningorgiobalenvironmentale
Lovel of integration	Same drivers are used for energy industry and land use consistency between
Level of integration	scenarios feedback between different submodels
Links to other models	IMAGE uses input from Phoenix (demography) and has been linked to several other
Links to other models	socio-economic models in global assessments e g GTAP Env-Linkages
	WaterGAP IMPACT GLOBIO uses IMAGE output for the calculation of a
	biodiversity index.
Scenarios used	SRES, MA, GEO, OECD, IAASTD, EURuralis
Ease of	not available
use/accessibility	
Website	http://www.mnp.nl/en/themasites/image/index.html

Model name	IMPACT -WATER
Full model name	International Model for Policy Analysis of Agricultural Commodities and Trade
Model type	Integrated model (partical equilibrium + hydrological model)
Subtype	agriculture
Thematic coverage	agriculture, fishery, water (related to agriculture)
Input (key drivers	Income, and population growth (to determine food and non-agricultural water
and pressures)	demand), Crop productivity (depends on various drivers, incl. agricultural
-	research), change in available agricultural area over time, climate parameters, plus
	irrigation and water supply information, trade policies
Output (key	Crop area, yield, production, demand for food, feed and other uses, prices,
variables)	Livestock numbers, yield, production, demand, prices, Net trade in 32 agricultural
	commodities (virtually all global food trade), Percentage and number of
	malnourished preschool children, Per-capita calorie availability from foods
Geographical	global: 115 regions and countries, intersected with 126 river basins (281 spatial
coverage and	units), including EU-15 and eastern Europe
resolution	
Temporal coverage	base: 2000 until 2020/2025/2050, annual time steps
and resolution	
Analytical technique	partial equilibrium model (sectoral agricultural model)
Model developers	International Food Policy Research Institute (IFPRI) of the CGIAR Network
and/or owners	
Model development	1st version of IMPACT (1990-2000), latest version: 2005
history	The partial equilibrium model IMPACT was coupled to the hydrological model
	WSM to create IMPACT-WATER to be able to include climate change effects on
	agriculture production.
Target Group/users	Aim was to help achieve long-term vision and consensus among policy makers
	and researchers about the actions that are necessary to feed the world in the future,
	reduce poverty, and protect the natural resource base. IMPACT has been used in

	numerous international environmental assessments (such as World Water Vision, Millennium Ecosystem Assessment). Currently being used in UNEP's Global
	Environmental Outlook (GEO 4) and the International Assessment of Agricultural
	Solonee and Technology for Development (IAASTD)
C.P. C.	M 11 m 1 LDIM 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1
Calibration	Model uses the UN Medium Variant Population growth projections, and follows
	the global hydrology patterns embodied from the climate data provided by the
	Climate Research Unit of the University of East Anglia. The streamflow and
	runoff data have been calibrated to WaterGAP of the University of Kassel.
Validation	IMPACT has been used in a historical counterfactual analysis that accurately
	produced the historical record of agricultural production and consumption from
	1970 to 2000.
Uncertainty analysis	Climate uncertainty is explored with the use of alternative GCM scenarios, which
	are downscaled to the spatial units of IMPACT.
Key reference	Rosegrant et al. (2005)
Level of integration	Water is the key environmental component which is directly integrated into the
	model structure. Response to water availability is measured in terms of yield loss
	(relative to full potential) IMPACT-WATER is the only model that takes into
	account water availability for food production (other models assume that water for
	irrigation is available)
Links to other models	The IMPACT model has been linked to a range of models in international
Links to other models	assessments such as GTEM (Australia PAPE) IMAGE (MND Netherlando) AIM
	(Not'l Inst for Env Studios, Jonan) and WaterGAD (Univ. of Kassal)
<u>G</u> 1	(Nat I first for Env Studies, Japan) and WaterGAP (Univ. of Kasser).
Scenarios used	MA, IAASD scenarios
Ease of	Ease-of-use is very limited (i.e. referring to the full version of IMPACI). IFPRI
use/accessibility	has developed a distributional version (IMPACT-D) that can be downloaded free
	of charge (www.IFPRI.org/themes/impact/impactd.asp).
Website	http://www.itpri.org/themes/impact.htm
Comments/remarks	Description hase been taken from EEA, 2008
Model structure	Climate scenarios:
	- Rainfall - Potential
	- Runoff evapotranspiration
	Water Demand Water Water Supply
	Irrigation Simulation Kenewable water
	Domestic Model Ffective water
	Livestock Supply for
	Industry irrigated and
	Environment IMPACT rainfed crops
	↑ WATER
	_
	IMPACT-
	FOOD
	Food Supply and Demand
	Crop area, yield, production, demand, trade and prices
	and livestock production, demand, trade and prices

Model name	MIMES
Full name	Multiscale integrated model of ecosystem services
Model type	integrated assessment model
Subtype	
Thematic coverage	dynamics and tradeoffs among natural, human, built and social capital, joint economic
	and social valuation of ecosystem services, based on physical ecosystem models
Input (key drivers	climate, land use, socio-economic drivers
and pressures)	
Output (key	global temperature, atmospheric carbon, sealevel, water, fossil and alternative energy

variables)	consumption, area of different land covers, knowledge, human, built and social capital,
	physical and monetary values for 11 ecosystem services, per capita food and welfare
Geographical	global, 1° by 1° resolution
coverage and	
resolution	
Temporal coverage	unknown
and resolution	
Analytical technique	meta-model, dynamic system model
Model developers	The Gund Institute for Ecological Economics, University of Vermont, USA, together
and/or owners	with University of Sao Paulo, Helmholtz CER, Wageningen University, Palawan State
	University, Boston University, Florida Institute of Technology, Kansas University,
	Michigan State University, Stanford University, University of Denver, USDA Forest
	Service, National Center for Atmospheric Research
Model development	1st version: 2007, MIMES builds on the GUMBO model to allow for spatial explicit
history	modeling at various scales, software: simile
Target Group/users	The MIMES project aims to integrate participatory model building, data collection and
	valuation, to advance the study of ecosystem services for use in integrated assessments.
C.P	(http://www.uvm.edu/giee/mimes/media.htm)
	Not available
Uncertainty analysis	Not available
Key reference	df
Level of integration	Both ecological and socioeconomic changes are endogenous to the model, with a
_	pronounced emphasis on interactions and feedbacks between the two. Dyamic feedback
	between human technology, economic production, welfare and ecosystem services.
Links to other models	MIMES is a metamodel that used output from several global models (IFs, IMAGE,
	CLUE, Phoenix, AIM, CLIMBER, EcoSim, IMPACT, WaterGAP, CENTURY,
	BIOME) to derive relationships between variables.
Scenarios used	MIMES/GUMBO scenarios.
Ease of	MIMES can be dowloaded at: http://www.uvm.edu/giee/mimes2/downloads.html
use/accessibility	requires simile software
Website	http://www.uvm.edu/giee/mimes2/
Comments/remarks	Global maps of ecosystem services from the MIMES model can be found at:
	http://www.gulfofmaine.org/EBMWorkGroups/docs/Roelof-Boumans-presentation-at-
	Oct200/-WorkGroup1-2-meeting.pdf
Model structure	Figure 1. General outline of the MIMES model: The multiscale integrated Earth Systems model
	Disambara Locations Anthronounhora
	Services Cultures
	Social Capital
	Nutrient Bio- Cycling diversity Human Capital
	Exchanges Between
	Locations
	Hydrosphere Lithosphere Atmosphere
	Water Geological Farth Enormy
	by Carbon Carbon
	Ores Gases

1.1.2 Scenario-building tools

Model name	PoleStar
Full model name	
Model type	scenario building and planing tools
Subtype	
Thematic coverage	Accounting model that combines exogenous economic, resource and environmental
	information on a global and regional level
Input (key drivers	GDP and population development, more specified socio-economic drivers, environmental
and pressures)	drivers (resources, pollution)
Output (key	water and energy use, oil reserves left, CO ₂ emissions, agricultural requirements,
variables)	pollution, poverty
Geographical	PoleStar is applied at community, national, regional and global level.
coverage and	
resolution	
Temporal coverage	Base: 1996
and resolution	
Analytical	Meta-model
technique	
Model developers	PoleStar was conceived in 1991 by Gordon Goodman, Director of Stockholm
and/or owners	Environment Institute (SEI) and Paul Raskin, President of Tellus Institute and Director of
	SEI's Boston Center. Dr. Raskin has supervised the design and development of the
	software and its national, regional and local applications.
Model development	1st version 1991
history	
Target Group/users	Scenarios were quantified using the PoleStar software and used in numerous global
	studies including UNEP's Global Environment Report series, the U.S. National Academy
	of Sciences' Board on Sustainable Development report Our Common Journey, the World
	Water Vision and the OECD Environmental Outlook.
Calibration	unknown
Validation	unknown
Uncertainty	unknown

analysis	
Key reference	http://www.sei.se/mediamanager/documents/Publications/Future/polestar_v2000.pdf
Level of integration	
Links to other	PoleStar has been used in the GEO-4 assessment, linked with AIM, IMAGE, WaterGAP
models	and EwE/EcoOcean.
Scenarios used	GSG scenarios were quantified using PoleStar.
Ease of	Easy to use software tool for sustainability studies, both scenario-building tool and
use/accessibility	database of current indicators, flexible and user-friendly framework for building and
	assessing alternative development scenarios, user manual (http://www.seib.org/polestar)
Website	http://www.polestarproject.org/, http://www.seib.org/polestar
Model structure	PoleStar Module Linkages in the Basic Structure

Threshold 21
Integrated scenario building and planing tools
national development, policies
policy options, socio-economic factors, resources, technology
GDP
focussed on the national level, globally applicable, not spatially explicit
50-100 years
dynamic simulation tool (uses Montecarlo optimization techniques)
Millennium Institute
1st version 1994, programming software: Vensim
First version was a country-level model for national decision makers focussed on national
development. It is a user-friendly, systems thinking software program that permits users
to organize, access and analyze necessary information for making prudent decisions on
sustainable development strategy. It is the first computer analysis tool to integrate human,
economic and environmental concerns into one model and is uniquely designed for
national application. Threshold 21 (121) is a dynamic simulation tool designed to support
comprehensive, integrated long-term national development planning. 121 supports
comparative analysis of different policy options, and helps users to identify the set of policies that tend to lead towards a decired goal. This insight into how different
indicators of development interact with one another to produce an outcome deepens users
understanding of development challenges
Country level data are used to calibrate the national models if possible otherwise
international data sources (World Development Indicators FAOSTAT World Population

	Prospects, Energy Statistics and International Financial Statistics) are used.
Validation	T21 has been validated through a variety of tests, including effective simulation of
	historical periods.
	(http://www.threshold21.com/integrated_planning/tools/T21/validationstudy.html)
Uncertainty	Not available
analysis	
Key reference	http://www.systemdynamics.org/conferences/1995/proceed/papersvol1/barne022.pdf
Level of integration	High level of integration: 800 variables in different sector modules (demographics,
	agricultural production, health care, food and nutrition, international trade, national
	accounts, social services, energy, energy efficiency, goods production, education and
	environment) are dynamically linked. Individual sectors can modelled in a more elaborate
	or simple version, several countr-specific versions have been developed (e.g. Bangladesh,
	USA, Italy, China, Ghana)
Links to other	unknown
models	
Ease of	PC-based, user-friendly tool, open source, library for download, requires active role of
use/accessibility	user in the definition of the model structure.
Website	http://www.millenniuminstitute.net/integrated_planning/tools/121/
Model structure	Overview of Model Structure
	Land Overview of Iviouel Structure
	economic exports
	production
	halance of exchange
	energy payments
	goods capital
	investment
	Labor agricultural capital environment
	capital
	quality of
	education social service consumption
	capital pollution
	births
	material quality of life
	population deaths
	Figure 1: Overview of Threshold 21

1.1.3 Economic models

Model name	Env-Linkages
Full model name	
Model type	general economic model
Subtype	
Thematic coverage	macro-economy and climate (carbon emissions)
Input (key drivers)	socio-economic factors, policy instruments (carbon taxes, tradable emission permits, regulatory policies), labour, capital, energy, technology
Output (key	GDP/capita, production of food (crops, livestock), household consumption
variables)	
Geographical	global, aggregated in 34 countries/regions
coverage and	
resolution	
Temporal coverage	Base year: 2001, annual time steps
and resolution	
Analytical technique	general equilibrium model

Model developers	Environment Directorate of the OECD Secretariat
and/or owners	Env Linkages is based on the CREEN model and was further developed into
history	IOBS Software: GAMS
Target Group/users	This model has been developed to assess the economic impact of abating
ranger of oup, about	Greenhouse Gases using several different economic instruments. It is used by
	the World Bank for research on global economics.
Calibration	unknown
Validation	Not available
Uncertainty analysis	Not available
Key reference	http://lysander.sourceoecd.org/vl=2821760/cl=15/nw=1/rpsv/workingpapers/181
	51973/wp_5kz7wcbr7l9n.htm, van Mensbrugghe (2005): LINKAGE technical
	reference document version 6.0
Level of integration	The different modules are well-integrated.
Links to other models	Within the OECD environmental outlook, Env-Linkages has been linked to
	IMAGE, TIMER and LEITAP (version of GTAP).
Ease of	Model is not available
use/accessibility	
Website	http://www.olis.oecd.org/olis/2008doc.nsf/linkto/eco-wkp(2008)61
Model structure	Figure 1. Structure of production in ENV-Linkages
	Gross Output of sector i
	Substitution between GHGs Bundle and output (σ^{Ghg})
	Net-of-GHGs Output
	Substitution between material inputs and VA plus energy (σ^0) Sub. between GHGs (σ^{emi})
	Demand for Intermediate Value-added
	goods and services plus energy Emissions of non-
	Substitution between material inputs (o ^{NT}) Substitution between VA and Energy (o ^{NVA})
	Domestic goods Imported goods Demand for Demand for Capital
	Substitution between Capital and Energy (d'®)
	Demand for Demand for Capital
	"Armington" specification (o ^M) Substitution between Capital and Specific Factor (o ^{rse})
	Demand for each input by region of origin
	Note: see Table 1 for parameter values Capital Specific factor

Model name	GTAP
Full model name	Global Trade Analysis Project
Model type	general economic model
Subtype	
Thematic coverage	Agro-economy
Input (key drivers)	production functions including capital, labour and land prices
Output (key	calculates consumption and trade of agricultural products
variables)	
Geographical	Country-level, not spatially explicit
coverage and	
resolution	
Temporal coverage	Base: 1995-2005
and resolution	
Analytical technique	general equilibrium model
Model developers	Purdue University, together with collaborators worldwide
and/or owners	
Model development	current version: GTAP 7, a dynamic version of GTAP is also available

history	(GDyn)
Target Group/users	The underlying GTAP database combined with the model is used by most
	individuals and agencies exploring the effects of different policies on
	aricultural trade.
Calibration	GTAP was calibrated against the GTAP-database.
Validation	Global Trade Analysis: Modeling and Applications, T.W. Hertel (ed.),
	Cambridge University Press, 1997, chapter 14;
	https://www.gtap.agecon.purdue.edu/resources/download/1813.pdf
Uncertainty analysis	https://www.gtap.agecon.purdue.edu/resources/download/39.pdf
Key reference	Global Trade Analysis: Modeling and Applications, T.W. Hertel (ed.),
	Cambridge University Press, 1997;
	https://www.gtap.agecon.purdue.edu/resources/download/1736.pdf
Level of integration	The different modules are well-integrated.
Links to other models	GTAP has been linked to IMAGE (van Meijl et al., 2006): IMAGE provides
	land-supply curves, yields and yield changes
Ease of	GTAP6.2a can be downloaded at:
Ease of use/accessibility	GTAP6.2a can be downloaded at: https://www.gtap.agecon.purdue.edu/models/current.asp
Ease of use/accessibility Website	GTAP6.2a can be downloaded at: https://www.gtap.agecon.purdue.edu/models/current.asp https://www.gtap.agecon.purdue.edu/
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By their
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By their very size, they may lack the detail of sector-specific models. Many of the
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and such
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static framework
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and the
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and thedynamic gains from trade cannot be calculated. The macro side is also rather
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and thedynamic gains from trade cannot be calculated. The macro side is also ratherlimited, precluding some of the effects of changes in interest rates and
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and thedynamic gains from trade cannot be calculated. The macro side is also ratherlimited, precluding some of the effects of changes in interest rates andexchange rate that may follow liberalisation. Nonetheless, for the purpose of
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and thedynamic gains from trade cannot be calculated. The macro side is also ratherlimited, precluding some of the effects of changes in interest rates andexchange rate that may follow liberalisation. Nonetheless, for the purpose ofanalysing world trade issues such as agricultural liberalisation and regional
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and thedynamic gains from trade cannot be calculated. The macro side is also ratherlimited, precluding some of the effects of changes in interest rates andexchange rate that may follow liberalisation. Nonetheless, for the purpose ofanalysing world trade issues such as agricultural liberalisation and regionalintegration, the GTAP model and database remains one of the best tools
Ease of use/accessibility Website Comments/remarks	GTAP6.2acanbedownloadedat:https://www.gtap.agecon.purdue.edu/models/current.asphttps://www.gtap.agecon.purdue.edu/Like all models, general equilibrium models have their limitations. By theirvery size, they may lack the detail of sector-specific models. Many of theparameters have not been estimated specifically for the model, and suchmodels are difficult to validate in the traditional sense. The static frameworklimits treatments of savings, capital accumulation and stockholding, and thedynamic gains from trade cannot be calculated. The macro side is also ratherlimited, precluding some of the effects of changes in interest rates andexchange rate that may follow liberalisation. Nonetheless, for the purpose ofanalysing world trade issues such as agricultural liberalisation and regionalintegration, the GTAP model and database remains one of the best toolsavailable. (Frandsen et al., 2000)

1.1.4 Land-use models

Model name	CLUE
Full model name	conversion of land use and its effects
Model type	land use model
Subtype	
Thematic coverage	land use, agriculture, urbanization
Input (key drivers	land use maps, remote sensing of land cover or census data on land use,
and pressures)	demographic change, land use requirements (based on trends, scenarios or
_	macro-economic modelling), spatial policies, (assumed) location factors
Output (key	land cover/ land use change
variables)	-
Geographical	Europe (EU-27), also case studies in a.o. Costa Rica, Ecuador, Honduras, the
coverage and	Netherlands, China, Java, Phillippines, Malaysia, Vietnam, Kenya, USA,
resolution	1x1km, case studies between 30m and 32km
Temporal coverage	20-40 years, time steps: monthly to annual
and resolution	
Analytical technique	hybrid model (systems dynamic and empirical statistical, alternatively:
	cellular automata mechanism)
Model developers	Department of Environmental sciences Landscape Centre Wageningen
and/or owners	University.
Model development	1st version: mid 1990s, ongoing
history	
Target Group/users	The CLUE model has been used by a large number of both universities and
	governmental research institutes from all over the world. Case study versions
	for a variety of regions exists.
Calibration	Calibration is based on observed land use patterns and, if possible, based on

	historic data. For some case studies calibration is helped by interviews with
Validation	Validation is based on historic land use changes for various case studies.
	Pontius, R.G. et al., 2007. Comparing the input, output, and validation maps
	for several models of land change. Annals of Regional Science. In press.
Uncertainty analysis	Has been performed for some parameters in a number of case studies
Kov reference	A wide range of scientific publications (full list at www.cluemodel.nl): e.g.
Key reference	Verburg PH Soephoer W Veldkamp A Limpiada R Espaldon V
	Sharifah Mastura S.A. 2002. Modeling the Spatial Dynamics of Regional
	Land Use: the CLUE-S Model. Environmental Management 30(3): 391-405.
Level of integration	High level of integration among land use sectors and spatial-temporal
	dynamics including path-dependence and spatial interactions. Feedbacks with
	environmental indicators can be addressed by tight coupling of the model
	with indicator models. Regional biophysical module, regional land use
	neighbouring grid-cells
Links to other models	In many projects, including EURURALIS and SENSOR the land
	requirements are based on macro-economic modelling results from models
	such as GTAP, NEMESIS or IMAGE.
Ease of	Full version with technical support of the model is only available for
use/accessibility	collaborative projects. Others may use the model signing a memorandum of
	understanding excluding the commercial use of the model and requirement of
Wahsita	proper referencing.
Comments/remarks	Description taken from EEA 2008
Model structure	
	Spatial policies Land use type specific and restrictions conversion settings
	Natural parks Conversion elasticity
	Restricted areas
	Agricultural development zones
	Land use change allocation procedure
	(demand)
	Trends
	Scenarios Iand use demand specific regression Soil, Soil,
	Advanced models #
	CLUE-s allocation procedure
	Land use type specific settings
	elasticity Allowed strengh
	Is the total
	Land use (t) Calculation of change Land use area equal Land use (t+1)
	Grid call specific settings
	Local Spatial Regional
	Local Spatial Regional Pi,u policies demand

1.1.5 Biogeochemical models

Model name	Agro-IBIS
Full model name	

Model type	biogeochemistry model
Subtype	agriculture
Thematic coverage	Natural terrestrial vegetation plus agriculture
Input (key drivers	climate, soil texture, farm management (fertilization, irrigation)
and pressures)	
Output (key	Vegetation cover, crop yield, LAI, N mimeralization, CO ₂ flux, N leaching,
variables)	water cycling, energy balance (crops: maize, soybean, winter and spring wheat)
Geographical	currently only run for North America, global application planned, 0.5° grid,
coverage and	model implementation also desired on field and precision agriculture scale
resolution	$(100m^2 \text{ respectively } 25m^2).$
Temporal coverage	time steps for calculations: hourly;
and resolution	for output: annual
Analytical	Dynamic systems model (process-based model)
technique	
Model developers	SAGE- Center for Sustainability and the Global Environment, University of
and/or owners	Wisconsin-Madison
Model development	IBIS is a dynamic global vegetation model (DGVM). The coupled crop-climate
history	model also examines the impact that agricultural land use has directly on the
	climate system through changes in biogeochemical cycling and the associated
	changes to land surface properties. Codes are written in FORTRAN.
Target Group/users	Primarily a research model, Agro-IBIS has been used extensively in the North
	American Carbon Program (NACP).
Calibration	Agricultural module was calibrated to the maize yield of the Upper Mississippi
	basin during the late 1990s (Kucharik & Brye, 2003).
Validation	Kucharik & Brye, 2003: all processes were modelled with reasonable
	accurancy (within 20% error), except for soil N; Kucharik, 2003 (Earth
	Interactions 7): simulation of US maize yields and comparison with national
	yield databas for regional scale (1958-1994); slight overestimation of high
	yields and underestimation of low yields, Kucharik & Twine (2007):
	comparision with AmeriFlux site at the Mead, Nebraska, Iwine & Kucharik
	(2008): comparison of LAI and absorped photosynthetically active ratiation
	with remote-sensing data; LAI of confiers was underestimated and LAI of
TT	grassiands overestimated.
oncertainty	not available
analysis Vou reference	Donnor & Kusharik 2002 Kusharik & Drug 2002; for IDIS; Ealay at al. 1006
Key reference	and Kucharik, 2005, Nucliank & Diye, 2005, 101 1D15. Foley et al., 1990
Lovel of integration	feedbacks between vegetation eron and soil module
Level of integration	Agro-IBIS has not been linked to other models
models	המינים המינים ביו אווגבע גם סגוובו וווטעבוז.
Face of	IBIS can be downloaded. Agro-IBIS is not available
use/accessibility	ibis can be ubwillbaucu, Agio-ibis is ilut available
Website	none
TT COSILE	none

SCENARIOS AND MODELS - FINAL REPORT APPENDICES

Madalmana	CENTELDY
Niodel name	
Full model name	
Model type	biogeochemistry models
Subtype	Agriculture, grasslands, forests
Thematic coverage	carbon, nutrient, and water dynamics
Input (key drivers	climate, site conditions, land use/management (including fire, grazing,
and pressures)	fertilization, irrigation, crop rotations, tillage practices)
Output (key	soil water, decomposition, SOC, grass, tree and crop production, CO ₂ flux, C, N,
variables)	P and S balance
Geographical	not spatially explicit, aggegation on the basis of land management (submodules:
coverage and	cropland and grassland, forest, savanna)
resolution	
Temporal coverage	CENTURY simulates C, N, P, and S dynamics through an annual cycle over
and resolution	time scales of centuries and millennia.
	time steps: monthly (there is also a version with daily time steps: DayCent)
Analytical technique	equilibrium model
Model developers	Colorado State University
and/or owners	
Model development	1st version: 1987. current version: CENTURY 5
history	software: the code has been rewritten in C++ for version 5, and modified to use
	platform-independent configuration and output files
Target Group/users	CENTURY has been used extensively for global change research. The model has
Tanger Group, asers	been executed in over 22 different areas in the world. It can be used to assess the
	impacts of regional climate change on a variety of important grassland
	ecosystems
Calibration	http://www.iemss.org/iemss2006/napers/w2/333_Liu_2.pdf
Validation	Parton et al 1993 Gilmanov et al 1997 Kamoni et al 2007
Uncertainty analysis	Not available
Key reference	Parton et al 1988 Parton et al 1994 a complete list of references is given at
isty reference	http://www.nrel.colostate.edu/nrojects/century5/
	<u>http://www.hteleolostate.edu/projects/centurys/</u>
Level of integration	soil, water, grassland and forest sub-models, interactions via C and N cycle,
	shading and competition
Links to other models	CENTURY has been coupled to vegetation growth models (Laurenroth et al.,

SCENARIOS AND MODELS - FINAL REPORT APPENDICES

	1993) such as STEPPE.
Ease of	Century 5 is a research version of the model, it can be obtained upon request,
use/accessibility	Century 4 is freely available at: http://www.nrel.colostate.edu/projects/century/
Website	http://www.nrel.colostate.edu/projects/century5/
Comments/remarks	CENTURY was especially developed to deal with a wide range of cropping
	system rotations and tillage practices for system analysis of the effects of
	management and global change on productivity and sustainability of
	agroecosystems.
Model structure	CENTURY MODEL
	CO2 LEAVES P,T POTENTIAL PRODUCTION BRANCHES BRANCHES ULARGE WOOD LARGE WOOD LARGE H ₂ O,S DEFAC H ₂ O,S DEFAC DEFAC DEFAC DEFAC DEFAC DEFAC

Model name	IBIS
Full model name	integrated biosphere simulator model
Model type	biogeochemistry model
Subtype	Dynamic global vegetation model
Thematic coverage	terrestrial ecosystems (vegetation with energy, water and carbon exchange,
	nutrient cycling)
Input (key drivers	climate, soil texture
and pressures)	
Output (key	energy, water and CO ₂ exchange between plants and atmosphere, plant growth
variables)	and competition, nutrient cycling and soil physics
Geographical	Global, 0.5 - 4°
coverage and	
resolution	
Temporal coverage	time steps: day/month, aggregation: annual
and resolution	
Analytical technique	Dynamic system model (process-based)
Model developers	SAGE- Center for Sustainability and the Global Environment, University of
and/or owners	Wisconsin-Madison
Model development	1st version described: 1996, current version: IBIS 2.6 (2008). IBIS was
history	designed to explicitly link land surface and hydrological processes, terrestrial
	biogeochemical cycles, and vegetation dynamics within a single physically
	consistent framework
Target Group/users	IBIS was developed as a first step toward gaining an improved understanding of
	global biospheric processes and studying their potential response to human
	activity.
Calibration	IBIS has been calibrated for several to field data (energy and carbon flux, Delire
	& Foley, 1999) and biome averages (e.g. NPP, SOC, LAI, Kucharik et al.,
Validation	Kucharik et al., 2000: Comparision of model results with historical data from
	1965 to 1994, for several ecosystems all over the globe
Uncertainty analysis	unknown
-----------------------	--
Key reference	Kucharik et al., 2000, Foley et al., 1996
Level of integration	IBIS was constructed to link explicitly land surface and hydrological processes,
	terrestrial biogeochemical cycles, and vegetation dynamics within a single,
	physically consistent framework. An agricultural submodule has been included:
	Agro-IBIS
Links to other models	unknown
Ease of	IBIS 2.6 and input files can be downloaded inclusive user guide at
use/accessibility	http://www.sage.wisc.edu/download/IBIS/ibis.html but no help is provided,
	listserve and user discussions exist,
	http://daac.ornl.gov/MODELS/guides/IBIS_Guide.html
Website	http://www.sage.wisc.edu/download/IBIS/ibis.html
Model structure	Not available

Model name	LPJmL
Full model name	Lund-Potsdam-Jena dynamic global vegetation model including managed land
Model type	biogeochemistry models
Subtype	Dynamic general vegetation model
Thematic coverage	Dynamic global vegetation model, including agriculture
Input (key drivers	monthly climate, soil type and atmospheric CO ₂ concentration, land management,
and pressures)	land use change
Output (key	vegetation cover (fraction of different plant functional types per grid cell), CO ₂
variables)	exchange, seasonal water balance (runoff volumes), annual NPP, crop production
Geographical	global, 10' or 0.5° grid cells
coverage and	
resolution	
Temporal coverage	time steps: day/month
and resolution	
Analytical	Dynamic systems model
technique	
Model developers	Potsdam Institute for Climate Impact Research. The LPJ model was originally
and/or owners	developed by a consortium led by I. Colin Prentice (then Max-Planck-Institute for
	Biogeochemistry, Jena; now at Bristol University), Wolfgang Cramer (PIK), and
	Martin Sykes (Lund University). The name derives from the three locations Lund-
	Potsdam-Jena but is no longer to be interpreted that way. Managed by a small
	steering committee, the consortium conducted regular meetings and consultations
	with key users of LPJ.
Model	Originally a model to predict natural vegetation cover (based on the BIOME
development	family), there is also a version including an agriculture module (LPJmL (managed
nistory	lands)); current version LPJ3 (with and without managed lands). LPJ was
	originally written in FORTRAN, for LPJ version 2 C++ has been used, the current
Target	LPL has been used in numerous studies on responses and feedbacks of the
Target Croun/usors	biosphere in the Earth System (e.g. Browkin et al. 2004: Lucht et al. 2002:
Group/users	Schaphoff et al. 2006: Sitch et al. 2005)
Calibration	NPP biomass NFP and seasonal carbon cycle have been calibrated against station
Canbration	measurements
Validation	LPJ has been validated from the stand to the global scale (Hickler et al. 2004)
	Cramer et al. 2001: Comparison of 6 global vegetation models. Bondeau et al.
	2007: comparison with historical data
Uncertainty	Jung et al., 2007a, Jung et al., 2007b, Wolf et al., 2008 (for LPJ-Guess)
analysis	
Key references	Sitch et al., 2003, Bondeau et al., 2007
Level of	The different modules are well-integrated.
integration	
Links to other	LPJ has been included in the ATEAM vulnerability assessment tool. Currently
models	work is ongoing to link LPJ to IMAGE.
Ease of	open and unrestricted access, LPJ can be downloaded (upon request) at
use/accessibility	http://www.pik-potsdam.de/research/cooperations/lpjweb/lpj-lpjml-versions

Model name	PICUS
Full model name	
Model type	biogeochemistry models
Subtype	forestry
Thematic coverage	stand-level foresty model (dynamic succession) (managed plantations and natural
	forest, multi- and single species)
Input (key drivers	climate, forestry management, disturbances, N deposition
and pressures)	
Output (key	timber yield, vegetation composition, carbon, nitrogen cycle
variables)	
Geographical	temperate forests, Europe, 100m ² patches
coverage and	

resolution	
Temporal coverage	monthly time steps with annual integration
and resolution	
Analytical technique	Dynamic systems model (process-based): individual tree-based model
Model developers	University of Natural Resources and Applied Life Sciences, Vienna
and/or owners	
Model development	published: 2001, current version: PICUS 2.0. PICUS 1.2 was a gap model to
history	capture competition and canopy structre, PICUS 1.3 included an physiological
-	growth function. PICUS 1.4 included soil C and N cycling.
Target Group/users	PICUS was originally developed as a decision support tool for forest managers. It
	simulates forest succession in the complex topography of the Eastern Alps in
	central Europe. The original gap-model was complemented with the 3-PG model
	in version 1.3. Current version PICUS v1.4
Calibration	PICUS was calibrated against data from national forest inventory.
Validation	Testing against independent long-term growth and yield data revealed good
	correspondence between observed and predicted values of volume production and
	stand structure (Seidl et al., 2005, Badeck et al., 2001)
Uncertainty analysis	Not available
Key reference	Lexer & Honniger, 2001, Seidl et al., 2005, Seidl et al., 2007, Seidl et al., 2008
Level of integration	The different modules are well-integrated.
Links to other models	PICUS has been used together with EURO-FOR, OSCAR (regional models),
	ForAG/FASOM (global), AROPAJ (regional agriculture) and EFEM-DNDC
	(agriculture at farm level) in the ENFA/INSEA assessment. It has been combined with the word products model (WDM) to evaluate orthom storage in word
	with the wood products model (WPM) to evaluate carbon storage in wood products (Saidl et al. 2007)
Face of	Model is not available
Lase 01	Nodel is not available
Website	http://www.t3 hoku ac at/picus html?&I =1
Comments/remarks	The hybridization of PICUS with 3-PG in version 1.3 aims at combining the
Comments, remarks	abilities of gap models with regard to interand intra-specific competition multi-
	species and multi-layered stand structure and general applicability with the
	benefits of a widely applied, robust stand-level estimate of forest production based
	on the concept of radiation use efficiency.
Model structure	atmospheric (COg) precipitation global radiation temperature structure (yearly timestep)
	diffu motorcolonical data diffus VVPD (Polauschildz)
	production (daily timestep)
	fraction of INJ in leaves fraction of Shaded leaves
	dain grosse mass or, photosynthetic rate of surif data respiration as a rate of surif data respiration data respiration respiration
	leaves (Farquha+model) date ance fineroots tumover state variable common and the state variable
	assimilation conductance + process
	leaves (Leanng-model)
	(respiration) daily transpiration (evaporation) (Makel a model, including (from canopy) (transpiration) (Makel a model, including (from canopy) (transpiration) (transpiration
	canopy cell model pipe-model theory (Shinozakii) tree
	(evaporation) (1) throughfall untake
	outset rackon, objectavic Circle et al. Soil water content in layer (i) plant available nitrogen

Model nome	SAVANNA
Full model nome	SAVANNA
Fuil model name	hiogooghamistry models
Subture a	
	biome model
I nematic coverage	vegetation, animal population model and management in grassiand, shrubland,
Innet (here defense	savanna and forested ecosystems
input (key arivers	climate, vegetation type, topology, numan management (stocking densities), life
and pressures)	later and animal distribution (for functional groups) water and nutriant availing
Uniput (Key	jugate in and animal distribution (for functional groups), water and nutrient cycling,
Variables)	regional regulation depending on input data and studied acceptation (100,1000, and
Geographical	regional, resolution depending on input data and studied ecosystem (100-1000 grid
resolution	
Temporal coverage	time period: depending on climate input time horizon: 5.50 years time steps:
and resolution	weekly
A polytical technique	Dragage based model (dynamic systems model)
Madal developera	Mike Caughanaur National Pasaurae Faalagy Laboratory Calarada State
model developers	University
Model development	first published 1025 model has modified for various purposes. Originally developed
history	for pastoralism in African sayannas it has been applied to other ecosystems
mstor y	(Mongolian steppe North American prairie Rocky Mountain National Park) as well
Target Groun/users	Originally developed for African savannas (nastoralism) but has been applied
rarget Group/users	extensively to North American national narks as ecosystem management tool
	Includes forests and shrublands too
Calibration	Model was calibrated to plant growth data
Validation	SAVANNA has been validated by comparing predicted with actual vegetation cover
vanuation	and NPP (e.g. Christensen et al. 2003)
Uncertainty analysis	Not available
Kev reference	Coughenour & Chen 1997 Ludwig et al 2001
Level of integration	High level of integration of plant and animal stystems with abiotic (water) and
Lever of integration	management factors.
Links to other models	Linked to PHEWS to model Household economics.
Ease of	available at
use/accessibility	http://www.nrel.colostate.edu/ftp/coughenour/pubs_lock/index.php?Directory=Manu
· ·	al 1993
Website	http://www.nrel.colostate.edu/projects/savanna/
Model structure	
	(Hunting) Predation Pastoralism
	Ungulate Submodels
	Ungulate Ungulate Energy Herbivory
	Distribution Population Balance
	Weather Vegetation Soil Submodels
	Plant Primary Light
	(Fire) V
	Water
	(Soils Budget
	Fienre 1
	riguivi

1.1.6 Hydrological models

Model name	(E-) SWAT
Full model name	(Enhanced) Soil and Water Assessment Tool
Model type	Hydrological models
Subtype	
Thematic coverage	physically based, semi-distributed, continuous time, watershed model
Input (key drivers	land use (including details on management), topography, soil and climate
and pressures)	
Output (key	runoff, sediment yield, deep aquifier recharge
variables)	
Geographical	calculations are done on the scale of sub-watersheds
coverage and	
resolution	
Temporal coverage	daily time steps
and resolution	
Analytical	empirical-statistical
technique	
Model developers	public domain model, actively supported by the USDA Agricultural Research
and/or owners	Service at the Grassland, Soil and Water Research Laboratory in Temple, Texas,
	USA
Model development	1st version: 1998, current version SWAT 2005, see also:
history	http://www.card.iastate.edu/environment/items/asabe_swat.pdf
Target Group/users	SWAT was developed to assess the impact of land management and climate
	patterns on water supply and nonpoint source pollution in large, complex
	watersheds with varying soil, landcover, and management conditions over long
~ **	periods.
Calibration	SWAT has been calibrated for application to many different watersheds, e.g.
	http://www.mssanz.org.au/MODSIM0//papers/49_s11/InfluenceOfScales11_Heat
X7 19 1 49	hmanpdf; http://www.card.iastate.edu/publications/DBS/PDFFiles/05wp396.pdf
Validation	SWA1 has been validated for many single watersheas, e.g.
The sector in the	Nup.//www.caru.lastate.edu/publications/DBS/PDFFfles/03wp390.pdf
onducic	rang et al., 2008
anarysis Vou nofenence	http://www.aard.jastata.adu/anvironmant/itams/asaha_awat.ndf
Level of integration	The different modules are well integrated
Level of integration	me unierent modules ale wen-integrated.
Links to other	unknown
Foco of	SWAT can be downloaded at: http://www.brc.tamus.edu/swat/
Lase OI	SwAr can be ubwinbaueu al. http://www.bic.tainus.euu/swat/
Wobsito	http://www.brc.tamus.edu/swat/
Model structure	Not available
mouel su ucture	

Model name	WaterGAP
Full model name	Water – Global Assessment and Prognosis
Model type	hydrological model
Subtype	
Thematic coverage	Water availability, water use, water quality (industry, agriculture and domestic)
Input (key drivers	climate, land cover (livestock density, area irrigated), population size and
and pressures)	electricity production
Output (key	Water withdawals and water availability (discharge, annual renewable water
variables)	resources)
Geographical	global, country, river basin (1162 basins included), grid cells 0.5° by 0.5°
coverage and	
resolution	

Temporal coverage	Base: 1995 Climate base 1961-1990 daily time steps for water balance annual
and resolution	time steps for industrial and livestock water use, results for 1995. 2025 and
	2075
Analytical technique	Empirical-statistical
Model developers	Developed by the Centre for Environmental Systems Research of the
and/or owners	University of Kassel, Germany, in cooperation with the National Institute of
	Public Health and the Environment of The Netherlands (RIVM). Development
	since 2003 by the Universities of Kassel and Frankfurt.
Model development	1st version 1996, current version: WaterGAP 2
history	
Target Group/users	Developed as a tool for global analysis of water resources. Used in various
	global and continental resource assessment (World in Transition, World Water
	Vision, World Water Developement Report (UNSECO), MA)
Calibration	Hydrological model was calibrated to 30 years data from 724 discharge
	measurement stations; where data are available, socio-economic model
	parameters are calibrated for countries.
Validation	For validation, the predicted annual discharge values were compared to
	measured values at the 724 calibration stations and with data from other basins
	(Alcamo et al., 2003a). Validation for socio-economic estimates was done as
	weil (Doll & Siebert, 2002).
Uncertainty analysis	a first estimate of the geographical variation in uncertainty of calculations is
Voy nofononco	made, based on the goodness of int of the model to observed historical data
Key reference	(2002): Aleamo et al. (2002h)
I aval of integration	(2005), Alcallo et al., (20050)
Level of integration	WaterGAP has been used in several assessments (OECD GEO MA) in
Links to other models	combination with IMAGE IMPACT and EcoSim and AIM Based on
	WaterGAP a global model of terrestrial nitrogen (WaterGAP-N) has been
	developed.
Ease of	Model is not available for download.
use/accessibility	
Website	http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/WaterGAP/index.html
Model structure	
	Population Water withdrawals and consumption
	Technology Global Water Domestic
	Gimate Use Nodel Industrial
	Agriculture
	↓ ↓
	River basin
	water stress
	↑
	• Land Cover Global Water availability
	Gimate Hydrology Model Runoff
	• Recharge
	Fig. 1 Block diagram of the WaterGAP model.

Model name	WBM (+)
Full model name	Water Balance Model
Model type	Hydrological models
Subtype	
Thematic coverage	water cycle
Input (key drivers	climate and surface cover, population, irrigated area

and pressures)	
Output (key	sustainable water use: water use/withdrawl (agriculture, domestic, industry)
variables)	versus water discharge
Geographical	0.5° by 0.5° grid
coverage and	
resolution	
Temporal coverage	daily time steps, output on annual basis
and resolution	
Analytical technique	empirical-statistical
Model developers	M. Vörösmarty, Water System Analysis Group, Universityof New
and/or owners	Hampshire
Model development	unknown
history	
Target Group/users	unknown
Calibration	unknown
Validation	unknown
Uncertainty analysis	unknown
Key reference	Vörösmarty et al., 1989, Vörösmarty et al., 2000
Level of integration	unknown
Links to other models	unknown
Ease of	A detailed description of the model is available at:
use/accessibility	http://www.asb.cgiar.org/BNPP/phase2/ifpri/descriptionwater
	balance_model_10jul2003.doc
Website	Not available
Model structure	Not available

1.1.7 Biodiversity models

Model name	BII
Full model name	Biodiversity intactness index
Model type	Biodiversity model
Subtype	Indicator model
Thematic coverage	biodiversity loss due to land use change
Input (key drivers	land use (also needed: reference conditions for biodiversity)
and pressures)	land use types: protected, moderately used, degraded, cultivated, plantation and urban
Output (key	relative measure of biodiversity intactness (percentage of original population)
variables)	BII is a richness-and-area weighted average of the population impact of a set
	of land use activities, on a given groups of organisms, in a given area.
Geographical	Regional (Southern Africa), scale of aggregation: 10 ⁴ to 10 ⁶ km ²
coverage and	
resolution	
Temporal coverage	dependent on input (land use maps/predictions)
and resolution	
Analytical technique	empirical-statistical: expert opinion
Model developers	The biodiversity intactness index was first developed by R. J. Scholes and R.
and/or owners	Biggs for the Southern African Millennium Ecosystem Assessment (case
	study for MA).
Model development	Different approaches have been proposed by several authors (including
history	species occurence versus abundance)
Target Group/users	The BBI is an assessment tool designed to give an indication of current state
	and past changes in biodiversity. The BII is an aggregate index, intended to
	provide an intuitive, high-level synthetic overview for the public and policy
	makers. It can be disaggregated in several ways to meet the information
	needs of particular users: by ecosystem or political units, taxonomic group,
	functional type, or land use activity.
Calibration	The BBI has been calibrated on data for Southern Africa.

Validation	Valuation in biodiversity monitoring programmes: Lamb et al., 2009
Uncertainty analysis	Hui et al., 2008: biodiversity intactness variance as formal measure of
	uncertainty (case study: South Africa)
Key reference	Scholes & Biggs, 2004, Buckland et al., 2005, Nielsen et al., 2007
Level of integration	Not applicable (only land use as driver)
Links to other models	Not available (potential links to land use models)
Ease of	Calculation algorithm is given in Scholes & Biggs, 2004. Species richness
use/accessibility	information is needed for calculation.
Website	Not available
Model structure	The BII is calculated as:
	$BII = \left(\sum_{i}\sum_{j}\sum_{k}R_{ij}A_{jk}I_{ijk}\right) / \left(\sum_{i}\sum_{j}\sum_{k}R_{ij}A_{jk}\right)$
	where R_{ij} = richness (number of species) of taxon i in ecosystem j,
	and A_{jk} = area of land use k in ecosystem j

Model name	EUROMOVE
Full model name	
Model type	Biodiversity model
Subtype	Bioclimatic envelope model
Thematic coverage	biodiversity in relation to climate change
Input (key drivers	climate change, current plant distributions
and pressures)	
Output (key	changes in plant species number and distribution (stable, increase, decrease)
variables)	-
Geographical	Europe, 2500km ² grid cells (dependent on input data)
coverage and	
resolution	
Temporal coverage	baseline: 1990/1995, results reported for 2025, 2050 and 2100, annual time
and resolution	steps
Analytical technique	empirical bioclimatic envelope modelling based on realized niches, species-
	based logistic regression model by which occurrence probabilities can be
	calculated for almost 1400 European vascular plant species
Model developers	Netherlands Environmental Assessment Agency
and/or owners	
Model development	published: 2002
history	The large state of the state of
Target Group/users	Used to support climate change impact research at European level, including
	applications for the European Environment Agency, evaluation of policies to
Calibration	Calibrated on 1000 data all multiple logistic regression analyzes regulted in
Cambration	calibrated on 1990 data – an induliple logistic regression analyses resulted in statistically significant models $(q = 0.01)$. On average the deviance
	explained (D) was 12% indicating a relatively high predictive power
Validation	Not available
Uncertainty analysis	Not available
Kev reference	Bakkenes et al. 2002 Bakkenes et al. 2006
Level of integration	Not applicable
Links to other models	EUROMOVE uses climate data from IMAGE model
Ease of	Model not available online.
use/accessibility	· · · · · · · · · · · · · · · · · · ·
Website	Not available
Comments/remarks	Description copied from EEA, 2008
Model structure	Not available

Model name	GARP-based species distribution models
Full model name	GARP=Genetic Algorithm for Rule-set Production
Model type	Biodiversity model
Subtype	Bioclimatic envelope model
Thematic coverage	biodiversity in relation to climate change

Input (key drivers and pressures)	climate change, also required: plant species distribution
Output (key	number of species species distribution maps
variables)	number of species, species distribution maps
Geographical	GIS-based spatial explicit approach local/regional depending on input
coverage and	(species presence data)
resolution	(openeo presence aua)
Temporal coverage	Depending on climate change input
and resolution	- · · · · · · · · · · · · · · · · · · ·
Analytical technique	ecological niche modelling, based on genetic algorithms
Model developers	D. Stockwell and A. Boston (University of California, San Diego,
and/or owners	Environmental Resources Information Network (ERIN))
Model development	The GARP was first implemented at the Environmental Resources
history	Information Network (ERIN) (Boston and Stockwell 1994).
Target Group/users	
Calibration	Model is calibrated based on presence data of species in relation to
	environmental variables
Validation	Stockman et al. (2006) tested the performance of GARP to predict spider
	distribution in California based on a limited number of museum specimens.
	Conclusion: simple bioclimatic envelope models perfomed better than
	GARP.
Uncertainty analysis	unknown
Key reference	Boston & Stockwell, 1995, Stockwell, 2006
Level of integration	Not applicable
Links to other models	Not applicable
Ease of	methodology is available online: www.lifemapper.org/desktopgarp
use/accessibility	
Website	Not available
Comments/remarks	The GARP models are a model family, not a single model with different
	equations.
Model structure	Not available
Model name	GLOBIO
Full model name	Global Methodology for Mapping Human Impacts on the Biosphere
Model type	Biodiversity model
Subtype	Indicator model
Thematic coverage	effects of climate change, land use change, infrastructure development and
	nitrogen deposition on biodiversity
Input (key drivers	Land cover, land use and land use intensity, infrastructure, atmospheric N

input (key uniters	Eulité cover, fuille use une fuille use intensity, influstracture, utilospherie re
and pressures)	deposition, climate (precipitation and temperature)
Output (key	Mean Species Abundance (MSA)
variables)	
Geographical	global, (0.5° by 0.5° for climatic data, 1km by 1km for land use data)
coverage and	
resolution	
Temporal coverage	Depending on input data
and resolution	
Analytical technique	empirical-statistical model: Dose-response relationships between
	fragmentation, infrastructural development
Model developers	UNEP-DEWA, UNEP-WCMC, UNEP-GRID-Arendal, Netherlands
and/or owners	Environmental Assessment Agency
Model development	1st version: 2001, current version GLOBIO3
history	
Target Group/users	GLOBIO is aimed at providing information for understanding ongoing trends
	and depicting future trends in regional and global assessments. GLOBIO3 is
	a quantitative model used in the assessment of policy options for reducing
	global biodiversity loss. The model is used in global studies, such as the
	OECD Environmental Outlook, GEO4 and COPI/TEEB.
Calibration	Not applicable

Validation	Not available
Uncertainty analysis	Not available
Key reference	Alkemade et al. (2009)
Level of integration	Different pressures (land use change and fragementation, pollution) are well-
	integrated, double-counting is avoided (pollution affects biodiversity only in
	natural areas while it is included in land use effects for managed land).
Links to other models	Uses land use and N emission output from IMAGE and is thereby linked to
	land use/land cover and economics
Ease of	not available, however description of the parameters used can be found in
use/accessibility	Alkemade et al. (in press) and Alkemade et al. (2006)
Website	http://www.globio.info/
Model structure	Not available

Model name	MIRABEL
Full model name	Models for Integrated Review and Assessment of Biodiversity in European
	Landscapes
Model type	Biodiversity model
Subtype	Indicator model
Thematic coverage	biodiversity
Input (key drivers	pollution (eutrophication, nitrogen deposition, acidification, climate change)
and pressures)	and land use (urbanization trasnport, farming intensification, drainage
	irrigation, land abandonment, afforestation, habitat fragmentation)
Output (key	trends in pressures, status of threatened habitats
variables)	
Geographical	28 European countries, 13 ecological regions, using CORINE land cover map
coverage and	
resolution	
Temporal coverage	Impact forecasts for 2010 and 2050 (climate)
and resolution	
Analytical technique	empirical-statistical model: based on expert opinion
Model developers	Centre for Ecology and Hydrology Merlewood Research Station, UK,
and/or owners	
Model development	Model was developed for the European Environment Agency (EEA)
history	
Target Group/users	MIRABEL was initially developed in response to a requirement to predict
	habitat change in the context of a 1998 assessment of the state of the
	environment in Europe.
Calibration	Not available
Validation	Not available
Uncertainty analysis	Not available
Key reference	Petit et al., 2001
Level of integration	unknown (effects based on expert opinion)
Links to other models	uses input from CARMEN, RAINS, IMAGE, EUTREND and LARCH for
	pressures/drivers
Ease of	wodel is not available
use/accessibility	N (111)
website	
Model structure	Not available

Model name	SAR
Full model name	Species area relationship
Model type	Biodiversity model
Subtype	Indicator model
Thematic coverage	Biodiversity loss due to habitat loss
Input (key drivers	habitat loss (climate change via IMAGE, van Vuuren et al., 2006), N
and pressures)	deposition

Output (key	number of species
variables)	
Geographical	global, calculated for different biogeographical units (biomes, ecoregions),
coverage and	not snatially explicit
resolution	not spatially expired
Tesolution	
Temporal coverage	For the MA projections were done until 2050.
and resolution	
Analytical technique	empirical-statistical (based on species area relationship $S = cA^{z}$), where S=
	number of species, A= area, z and = constants
Model developers	Relationship is based on ecological theory discussed by for example
and/or owners	Arrhenius, 1921, McArthur & Wilson, 1967 and Rosenzweig, 1995.
Model development	The species area relationship was applied as an indicator of biodiversity in
history	the Millennium Ecosystem Assessment (MA, 2005a).
Target Group/users	The SAR has not been applied for large-scale biodiversity assessments after
	the MA.
Calibration	Not available
Validation	Not available
Uncertainty analysis	uncertainty analysis was done by van Vuuren et al., 2006
Key reference	Pimm et al., 1995, Pimm et al., 2006, van Vuuren et al, 2006
Level of integration	Next to the species-area relationship, in the MA methodology also nitrogen
Ū	deposition was incorporated as pressure on biodiversity (MA, 2005e).
Links to other models	During the MA the changes in the species area relationship was based on
	land use changes calcualted by the IMAGE model.
Ease of	Equations have been published and calculations can easily by done.
use/accessibility	
Website	none
Model structure	Not available

1.1.8 Ocean Models

Model name	ASSETS
Full model name	Assessment of Estuarine Trophic Status
Model type	Biogeochemistry models
Subtype	Hydrology
Thematic coverage	Water quality, Trophic status, Human influence
Input (key drivers	Comparison of anthropogenic land-based and oceanic nutrient loading with natural
and pressures)	background concentrations, estimates of susceptibility; Nitrogen and Phosphorous
	levels, Chlorophyll a and macroalgae growth, algal dominance changes, loss of SAV,
	dissolved oxygen, harmful algae coverage; susceptibility, capacity of the system to
	dilute and/or flush nutrients, predictions of nutrient loading based on expected
	population increase, planned management actions, and expected change sin watershed
	uses.
Output (key	Indicator of Overall Human Influence on the system; An assessment of the current state
variables)	of the system; and the future Response of the system under different scenarios.
Geographical	Estuarine/Watershed level. Currently, there are 157 assessed estuarine systems in
coverage and	ASSETS primarily based in the U.S. But there are a number of international records.
resolution	Resolution of output is based the the bathymetry grid used, however the details are not
	specified in the peer-reviewed methodology.
Temporal coverage	Provides an assessment of current state (sets reference conditions) and forecasts future
and resolution	outlook based on the susceptibility of the system and one of three options: 1) Future
	nutrient pressures decrease; Future nutrient pressures are unchanged; and Future
	nutrient pressures are increase. Temporal resolution is not specifically defined and is
	referred to as 'Future Outlook' based on data such as demographic projections.
Analytical technique	A screening model that uses a Pressure-State-Response framework
Model developers	ASSETS was devloped from the National Estuarine Eutrophication Assessment
and/or owners	(NEEA) methodology originally developed by a team of people from NOAA, other
	federal and state agencies, private organisations, colleges and universities. ASSETS was

	developed by a team of NOAA scientists and researchers from the EU, working at the
	Institute for Marine Research (IMAR).
Model development	ASSETS was developed from the National Estuarine Eutrophication Assessment
history	(NEEA) that was lauched in 1990. 1990 - 1998: Data and information of 138 estuaries
	and coastal waters was collected from approximately 400 scientists using an expert
	knowledge engineering approach. Five regional reports detailed conditions and trends of
	16 indicator variables within US estuarine and coastal systems. 1998 - 1999: Data and
	information from the Estuarine Eutrophication Survey Synthesis to NEAA and
	development of eutrophication assessment method. 2001: Improvement of NEAA and
	development into ASSETS. 2002: NEEA Update workshop and guidance document.
	2003 - 2005: Application of NEAA/ASSETS methodology to update 13 North and Mid-
	Attantic systems and development of a numan use indicator to complement the ASSETS
	Planning Office and EPA (funding through CICEET) 2003: Application of the
	NEEA/ASSETS methodology to 10 estuarine and coastal systems in the European
	Union (Portugal): Research into the addition of typology criteria for entrophication
	symptom range definitions 2004. Development of the http://www.eutro.org.website
	listing ASSETS scores for systems from the US. EU (Germany, Ireland, Portugal), and
	China. COMPASS initiative, bringing together ad hoc group from the EU and the US in
	order to examine a possibel harmonization between OSPAR-COMPP and ASSETS.
	2005: Application of ASSETS methodology to North East National Estuarine Research
	Reserve(NERR) systems using the System Wide Monitoring Data (SWMP) (funding
	through CICEET - Cooperative Institute for Coastal and Estuarine Environmental
	Technology). Preparation of a University of Maryland Center for Environmental Studies
	- NOAA partnership in order to apply the NEEA/ASSETS methodology via an online
	survey and National Workshop to update the National Estuarine Eutrophication
	Assessment for 138 US estuaries and coastal waterbodies. Preparation of a joint US-EU-
	China initiative (NOAA-INIAR-SOA) in order to apply ASSETS to Chinese coastal
Torget Croup/users	Managara and Daliau makara: NEE A's aim was to define the United States national
Target Group/users	resource base and develop a national assessment canability and the aim of the ASSETS
	project was to provide an undate and improve NEFA using real data that was consistent
	with the philosophy of the original work but more robust in methodology.
Calibration	The ASSETS approach has been intercalibrated with the original NEEA work is
	demonstrated for 82 U.S. Estuaries in the key reference paper.
Validation	Conclusions are validated against a more extensive set of data from the original NEEA
	survey.
Uncertainty analysis	Not Specified
Key reference	Bricker et al. (2003).
Level of integration	Limited - based on assessment of eutrophication/water quality only.
Links to other	No links with other models are specified. Related assessments and programmes include:
models	Comparison and Assessment of Eutrophication (COMPASS); EPA National Coastal
	Assessment (INCA), CICEET Out of Manie Floject and acquisition and development of metrics and indices to describe the status and track trends of nutrient related water
	quality in estuaries and coastal waters: NOAA National estuarine Eutrophication
	Assessment Undate Program.
Ease of	Good - use of clear, colour-coded system. ASSETS application is freely available for
use/accessibility	download at: http://www.eutro.org/register/. It is available in four languages including
	Chinese. Results for the applications of ASSETS are available through the website:
	http://www.eutro.org/syslist.aspx. User manual is not available however the ASSETS
	programme includes a tutorial.
Website	http://www.eutro.org/
Comments/remarks	By focusing on commonalities and differences between U.S. And E.U. estuarine
	systems and coastal zones, ASSE1s may provide a stepping stone towards a unified
	system or systems which may accomodate the diversity of pressure, state, and responses
	of bour regions.

Model name	Atlantis
Full model name	
Model type	Biogeochemical
Subtype	
Thematic coverage	Ecosystem modelling, fisheries management
Input (key drivers	Biogeochemical ecosystem model (consumption, production, waste
and pressures)	production, migration, predaction, recruitment, habitat dependency, and
	natural andd fishing mortality); Hydrographic transport model; Fisheries fleet
	statistics (target, byproduct and bycatch groups, gear type (and associated
	selectivity curve and habitat impacts), habitat dependency, discarding, and
	effort allocation submodels).
Output (key	Marine ecosystem dynamics are represented by spatially explicit submodels
variables)	that simulate hydrographic processes, biogeochemical factors driving
	primary production, food web relations among functional groups, crude
	habitat interactions, and fishing fleet behaviour.
Geographical	Atlantis has been applied at a fine scale (specific bays/current systems) in a
coverage and	number of locations, initially around Australia but also the Californian
resolution	Current. The spatial geometry of the model is one made up of polygons
	which correspond to the geographical form of the study area. The area and
	shape of the polygons reflect the speed with which physical variables change
	with particular parts of the study area. This modelling approach is
	advantageous as it can be modified to nest fine-scale models within a coarser
	scale resolution.
Temporal coverage	For computational efficiency, a daily time step is used wherever possible.
and resolution	Within the biological modules however, a daily timestep may make the

	variables with fast dynamics become unstable. Therefore, while some groups
	(e.g. Fish) work on a daily time step other groups (e.g. phytoplankton) use an
	adaptive timestep, which is repeated until a full 24-h period has been
	completed. In the orginal Bay Model 2 (BM2), from which Atlantis was
	derived the model runs span a 20-vr time period (beginning after a 10 vr
	burn-in period) with output recorded every 14 days Simulations lasting 100
	with period) with output recorded every 14 days. Simulations fashing 100
	yis were also undertaken to check for long period cycles and to verify that
	the models had reached a representative state at the end of the 30 yr period.
Analytical technique	Deterministic, spatially explicit model.
Model developers	Elizabeth A. Fulton, Commonwealth Scientific and Industrial Research
and/or owners	Organization (CSIRO), Division of Marine Research, Australia. Funding for
	Atlantis is provided by NOAA NMFS, NOAA Fisheries and the
	Environment (FATE), NOAA NMFS Economic Program, Moore
	Foundation and the Packard Foundation
Model development	Atlantis was developed from a series of models that explored optimal
history	accosystem model complexity. A precursor to Atlantic the integrated Caparic
mstory	Des Exercitere Madel (ICDEM) (Ester et al. 2004) and a semblination of
	Bay Ecosystem Model (IGBEM) (Fution et al. 2004a), was a combination of
	the biological modules of the European Regional Seas Ecosystem Model
	(ERSEM) and the physical processes and spatial layout of the Port Philip Bay
	Integrated Model. Efforts to simplify the physiological processes in IGBEM
	resulted in the Bay Model 2 (BM2), a more parsimonious framework that
	still effectively captures system dynamics. Atlantis is a modified version of
	BM2, established to improve upon ecosystem based fishery management
	tools (text taken from Brand et al. 2007).
Target Group/users	Atlantis is targetted at those involved in ecosystem/fisheries Management
Tanger Group, asers	Strategy Evaluation (MSE) in which management policies and assessment
	methods are tested against simulations that represent a real ecosystem and its
	complexities. For example, the model can identify trade offs between
	complexities. For example, the model can identify fade ons between
	species, neets and management goals, and to identify effects of management
	policies. It is not intended for tactical management, for instance setting
	quotas for target stocks. Atlantis has been applied to more than 15
	ecosystems, primarily in the temperate waters of Australia and the US, and
	has been rated in high regard by the United Nations Food and Agriculture
	Organisation (FAO).
Calibration	Atlantis is calibrated to a wide range of data depending upon the area to
	which it is being applied. Tuning needs to be carried out until all groups
	persist and numerical stability is acheived. Model calibration currently
	involves trial and error and some users have calibrated the model manually
	due to long model run times that prevent the searching of the parameter space
	with automated procedures (Brand et al. 2007). The tuning procedure can
	use as a reference point values from the literature or outputs of other models
	such as Econath
Validation	Madal autouta and activate actual anningmental data annihila fan
vanuation	Model outputs are referenced against actual environmental data available for
	the area. This does potentially restrict the model to use in areas where a great
	deal of information is already available.
Uncertainty analysis	As Atlantis incorporates a great many parameters (despite being originally
	scaled down from the IGBEM model) a systematic sensitivity analysis is
	impractical. However, Fulton et al. (2004) recommends the use of factor
	screening to identify the most sensitive parts of the model and the exploration
	of the effects of the resulting restricted set of parameters.
Key reference	Fulton et al., 2004a; Fulton et al., 2004b; Fulton et al., 2005; Brand et al.
-	2007
Level of integration	Good - links biological, chemical, ecological, and fisheries data.
Links to other models	The model has not vet been integrated into a wider assessment process.
	Atlantis is built from a number of biological physical and fisheries sub-
	models
Face -f	Modelling process is complex and would need to be carried out by a
	modeling process is complex and would need to be carried out by a
use/accessibility	specialist. Background publications are readily available in the scientific
	literature, however technical papers are relatively inaccessible and the model
	developers would need to be contacted for further information. The model

Model name	Aus-ConnIe
Full model name	Australian Connectivity Interface
Model type	Biogeochemistry models
Subtype	Oceanography, Connectivity
Thematic coverage	Ocean circulation, larval dispersal, larvel recruitment, contaminant dispersal.
Input (key drivers	Sea level (Altimeter and Tide gauges); Wind fields; Particle trajectories;
and pressures)	Geostrophic currents; Wind forced components; Estimates of ocean currents;
Output (key	Maps showing land masses, the 200m depth contour, and spatial connectivity
variables)	statistics for the user specified source or sink.
Geographical	Australia; 0.5 degree geographical grid; All statistics were based on currents
coverage and	and trajectories computed at a fixed depth of $Z = 20m$, which was taken to be
resolution	representative of surface waters where larval concentrations tend to be
	highest.
Temporal coverage	Monthly and quarterly statistics are available, calculated as T (dispersion
and resolution	period = 10 and 20 days for monthly, and 30, 40, 60, and 80 days for the
	quarterly. Probailities were calculated from day 1 of the calender
	month/quarter to day T, then from day 2 to day T+1, until reaching the last
	day of the month/quarter. The probabilities were then avergaed to give a
	probability distribution representative of that month/quarter.
Analytical technique	Statistical model which analyzes of the particle trajectory information to give
	the following for each grid cell: 1) The probablility that particles beginning
	within any user specified region will be inside the grid cell at the end of the
	dispersion period (i.e. lifetime); 2) The probability that particles beginning
	within any user specified region will reach the grid cell before the end of the
	dispersion period; 3) The probability that particles arriving within any user
	specified region were inside the grid cell exactly one dispersion period
	previously; and 4) The probability that particles arriving within any specified
	region were inside the grid cell anytime within the previos dispersion period.
Model developers	Aus-Connie was developed as part of the Strategic marine Fund for the
and/or owners	Marine Environment (SRFME), a joint venture between CSIRO and the
	Western Australian State Government. Team: Scott Condie (Project leader),
	Jim Mansbridge (Statistical Programming), Jason Waring (Senior Web
	Interface/Designer), Irshad Nainar (web Interface/Database), and Madeleine
Madal danalamasist	Califi (Alufficulty Allalysis).
ivioael development	Aus-Connie was developed in 2003 and is based on JEMS-Connie, a
nistory	connectivity tool developed by USIKU Marine Research as part of the North
	west Shelf Joint Environmental Management Study (NWSJEMS). JEMS-

	Connie differs in that the domain is restricted to the North West Shelf of
	Western Australia, and the statistics were derived particle trajectories using
	hydrodynamic current fields. Access to JEMS-Connie is restricted.
Target Group/users	Aus-ConnIe has been developed as a web-tool for marine scientists and
	managers to investigate the large-scale patterns of spatial connectivity around
	Australia associated with ocean currents.
Calibration	Ocean current data are calibrated from: sea level anomolies (Topex/Poseidon
	satellite altimeter (9.9 day global cycle); ERS satellite altimeter (35 day
	global cycle); and tide-gauges from the Australian coastline); Temperature
	and Salinity measurements (a range of sources including the NODC World
	Ocean Atlas 1994 hydrographic data; CSIRO RV Franklin; RV Southern
	Surveyor; and SRV Aurora Australis); and Wind fields (NCEP-NCAR 40-
	year Reanalysis data set).
Validation	The model has been validated through comparisons with all the World Ocean
	Circulation Experiment (WOCE) satellite tracked surface drogued drifters in
	the region from January 1994 to December 1999.
Uncertainty analysis	Not Specified
Key reference	Condie et al., 2005
Level of integration	Limited - based on oceanographic variables of ocean currents.
Links to other models	No links with other models are specified. Aus-ConnIe was developed from
	the JEMS-Connie model.
Ease of	Relatively simple, the user must select: 1) A region of interest on the map
use/accessibility	(0.5 degree resolution); 2) Whether the selected region represents a source or
	a sink; 3) The year and month(s) on which the connectivity statistics will be
	based; 4) The dispersion period (10, 0r 20 days fro monthly or 30, 40, 60 or
	80 days for quarterly); and 5) Whether the connectivity probabilities are
	based only on particle distribution at the end of the dispersion period (after
	lifetime), or on all the particle distributions that occur over the dispersion
	period (within lifetime).
Website	http://www.per.marine.csiro.au/aus-connie/index.html
Model structure	Not available

Model name	Cumulative Threat Model for the global ocean
Full model name	
Model type	Biodiversity model
Subtype	Indicator model
Thematic coverage	Human influence, ecological change, threat indices
Input (key drivers	Expert survey; 17 anthropogenic drivers of ecosystem change - weighted by their
and pressures)	estimated ecological impact; maps of 14 marine ecosystems; models of 6 marine
	ecosystems.
Output (key	A single comparable estimate of cumulative human impact on 20 ecosystem types.
variables)	A
Geographical	Global but can be applied at the local- and regional-scale; 1km ² resolution grid.
coverage and	
resolution	
Temporal coverage	Datasets used are from a number of different year-ranges and so no specific output
and resolution	time is specified. The model implies that is it representing a reference level for current
	(2008) cumulative human impact, however this is not specifically discussed in the
	published paper or the supplementary materials.
Analytical technique	Ecosystem-specific, multi-scale, spatial, additive model
Model developers	Benjamin S. Halpern and team at UCSB. The work was funded by the National Center
and/or owners	for Ecological analysis and Synthesis (NCEAS) and supported by the National Science
	Foundation and a grant from the David and Lucile Packard Foundation to evaluate
	ecosystem based management in coastal areas.
Model development	Model published in 2008.
history	
Target Group/users	The model is aimed at managers, conservation groups, and policymakers, and has been
	widely used by many organisations since its publication (Web of Knowledge records

	33 citations for this paper since February 2008). The model has been as a layer in	
	documents designed to inform policy makers on threats and protection priorities for	
	marine systems.	
Calibration	Weighting of the different datasets was calibrated through an expert survey that	
	assessed the vulnerability of each ecosystem to each driver on the basis of 5 ecological	
	traits.	
Validation	Impact scores were 'ground-truthed' using global estimates of the condition of marine	
	ecosystems from previous studies; Results with weighting values from the expert	
	survey (which assessed the vulnerability of each ecosystem to each driver on the basis	
	of 5 ecological traits) were very similar to simulated values, with values slightly but	
	significantly different from null expectations for the categories of very low, medium,	
	medium high, and very high impact. Also, tested an alternative cumulative impact	
	model based on the average driver-by-ecosystem impact scores rather than the sum.	
	There was a very high correlation between outputs of the summed vs. average models	
	showing that the spatial pattern of relative impact is very similar under either model.	
	There was also a positive correlation between the average cumulative impact scores	
	and ocean condition in the ground truth regions. Using the new regression equation	
	from this groundtruth correlation led to very similar percents of the ocean in each	
	impact category compared to the summed model.	
Uncertainty analysis	Good - Model considers a broad range of anthropogenic drivers including climate	
V	Laborn et al. 2008	
Key reference	Good Model considers a broad range of anthronogenia drivers including elimeter	
Level of integration	change pollution invasive species and fisheries	
Links to other models	The model has not yet been integrated into a wider assessment process. Draviously	
Links to other models	published models were used to develop data layers and dstribution models of 6 marine	
	ecosystems were created through this process.	
Ease of	Modelling process is relatively complex, however the final outputs and data layers are	
use/accessibility	available for download through the internet and the cumulative index is easily	
	understandable with the following categories: Very Low impact, Low impact, Medium	
	impact, Medium High impact, High impact, and Very High impact.	
Website	http://www.nceas.ucsb.edu/GlobalMarine	
Model structure	Original Transformed Ecosystem	
	Driver Data (TI) Data (EJ)	
	SST SST Cumulative Impacts Human Impact Categories	
	Shipping Log Shipping +	
	Rescale Weights Ground-	
	Hard/Soft (uij)	
	Dem, dest fish Dem, dest fish	
	Summed Drivers	
	Org.pollutant Org.pollutant Seagrass	

Model name	ERSEM II
Full model name	European Regional Seas Ecosystem Model
Model type	Biogeochemical model
Subtype	ocean
Thematic coverage	Annual nutrient cycling, Regional Seas, physical parameters, biological
	parameters, benthic and pelagic coupling.

Input (key drivers	Pelagic model: Phytoplankton (regulating factors; carbon dynamics;
and pressures)	phosphorous dynamics; nitrogen dynamics; silicate dynamics; sinking of
	phytoplankton); Pelagic bacteria (Environmental regulating factors; Carbon
	dynamics; Nutrient Dynamics); Microzooplankton (Carbon dynamics;
	Nutrient dynamics); Mesozooplankton (Carbon dynamics; Nutrient dynamics; The assimilation balance); Palagia putrients; Dissolved evygen and reduction
	equivalents (Oxgen re-aeration); and Dissolved and narticulate organic
	matter. Benthic model: Benthic organisms (Environmental regulating factors:
	Carbon dynamics; Filter feeders; Nutrient dynamics; Assimilation balance);
	Benthic decomposers (Environmental regulating factors; Carbon dynamics;
	Nutrient dynamics; Assimilation balance); The organic matter in the
	sediments; Benthic nutrients and other dissolved components (Inputs to the
	benthic nutrients model; Ammonium; Nitrate; Phosphate; Silicate; Reduction
	Shifting of the layers
Output (kev	Simulations of the annual cycles of carbon, nitrogen, phosphorus and silicon
variables)	in the pelagic and benthic components of the marine ecosystem.
Geographical	Dependent on resolution of the model that it is coupled to. ERSEM's upper
coverage and	boxes extend from the surface to 30 m, the lower boxes from 30 m to the
resolution	bottom. When coupled to high resolution hydrodynamic models, ERSEM can
	be applied over large geographical scales. ERSEM could be adapted for other regions as it is essentially a generic model which is then coupled to an
	appropriate physical model for a region, such as the General Ocean
	Turbulence Model (GOTM). ERSEM has been shown to be equally
	applicable in tropical and warm temperate systems such as the Arabian Sea,
	Mediterranean and Irish Seas (Allen, Blackford and Radford, 1998; Allen,
	Sommerfield and Siddorn, 2002; Crise et al., 1999). Studies of land-ocean
	interaction have ranged from shallow coastal lagoons to an assessment of
	applications in 1, 2 and 3 dimensions
Temporal coverage	Dependent on resolution of the model that it is coupled to. When coupled to
and resolution	high resolution hydrodynamic models, ERSEM can be applied over large
	temporal scales. ERSEM also provides a model mesocosm environment that
	can be expected to react in a qualitatively correct manner to seasonal, regional
	and inter-annual variations. ERSEM model can reproduce long term inter- annual variations in mesozoonlankton biomass seen in the CPR dataset
Analytical technique	Statistical analysis of ecosystem dynamics.
Model developers	ERSEM II was developed by a consortium of organisations, namely:
and/or owners	Netherlands Institute for Sea Research (NIOZ); Plymouth Marine Laboratory
	(PML); Institut fur Meereskunde, University of Hamburg; Scottish Office
	Agriculture and Fisheries Department Marine Laboratory; Culterty Field
	Science University of Strathclyde: Ecological Modelling Centre Joint
	Department of DHI/VKI: Carl von Ossietzky University. ERSEM II was an
	EU Project in the Marine Science and Technology programme (MAST).
Model development	ERSEM I was developed from 1990-1993. ERSEM II was developed from
history	1993-1996 with the objective of developing a generic model system of the
	cycling of carbon and the macro-nutrients nitrate, ammonium, phosphate and
	applied to a range of other environments. Details of the versions of FRSFM
	are as follows: the 15-box version ERSEM I, based on a subdivision of the
	North Sea simulation area into 10 upper and 5 lower boxes; the 130-box
	version ERSEM II, based on a subdivision of the North Sea into 85 upper and
	45 lower boxes; the 138-box version of ERSEM, called COCOA
	(COntinental COastal Application), based on a subdivision of the North Sea
	Into y ₂ upper and 45 lower boxes with refined boxes in the southern North Sea and along the British and Danish coasts. Programming language:
	FORTRAN
Target Group/users	Scientists, policy-makers and managers. One of the main objectives of the
	ERSEM II project was to develop a model system with a prognostic

		C1 1
Calibration	capability in order for it to be u The major data sources that w a) datasets of original observat Institut für Meereskunde (IfM) of monthly mean values of chlorophyll, provided by the In The dataset from ICES was b north-west European shelf, usi provided climatological arithm quantiles for the five paramete The ERSEM model's range of capabilities. For example, rec model can reproduce long ter	useful as a decision-support tool. Vere used to calibrate the ERSEM datasets were tions compiled in the ECOMOD database of the) of the University of Hamburg and b) a dataset ° phosphate, nitrate, ammonium, silicate and nternational Council of the Sea (ICES) for IfM. based on data of the years 1985-1994 from the ing a 1° x 1° resolution, as for ERSEM II. ICES netic means, medians, standard deviations and trs mentioned. ° processes provides confidence in its predictive cent work has demonstrated that the ERSEM trm inter-annual variations in mesographantten
	biomass seen in the Continuou prognostic capability has been realistic physical forcing and r	us Plankton Recorder (CPR) dataset. ERSEM's a tested by making a 40-year-long hindcast with ealistic river inputs.
Uncertainty analysis	Not specified	
Key reference	ERSEM-II European Regior Journal of Sea Research (speci	nal Seas Ecosystem Model II (1993-1996), ial issue), 1997, 38(3-4).
Level of integration	Limited - focuses on lower t However this model is deem accurate physical model and so of data.	trophic levels of pelagic and benthic systems. The generic when coupled with a qualitatively o exhibits high interoperability with other types
Links to other models	ERSEM was conceived as a qualitatively correct physical Model (GOTM), should be ca of ecological fluxes througho oligotrophic gradients of the N	a generic model, which, when coupled to a model, such as the General Ocean Turbulence pable of correctly simulating the spatial pattern but the seasonal cycle and across eutrophic to lorth Sea.
Ease of use/accessibility	Modelling process is comple specialist. All methods are full the scientific (http://web.pml.ac.uk/ecomode downloadable from the PML that it possibly may be availab contact modelling@pml.ac.uk.	ex and would need to be carried out by a ly and transparently published and discussed in literature and ftp site els/ersem.htm). The model is not yet website although there is a link to it meaning ole in the future - for further information on this
Website	http://web.pml.ac.uk/ecomode	ls/index.html
Model structure	Forcing Cloud Cover Wind Stress Heat Flux Physics OD 1D 1D 3D GOTM POLCOMS Plymouth Marine	ERSEM model schematic
1	Laboratory	ERSEM model schematic

Model name	EwE. Ecospace & EcoOcean
Full model name	Ecopath with Ecosim, Ecospace & EcoOcean
Model type	Biogeochemical model
Subtype	Ecosystem model
Thematic coverage	Trophic interactions, population dynamics, ecosystem valuation, simulations.
Input (key drivers	Ecopath requires input of three of the following four parameters: Biomass:
and pressures)	Production/Biomass ratio (or total mortality): Consumption/Biomass ratio: and
una pressares)	Ecotrophic efficiency for each of the functional groups in the model. Ecosim inherits its
	initial key parameters from the base Ecopath model, and can incorporate (and benefits
	from) time series data, e.g. those available from single species stock assessments. This
	can include fishing effort or fishing mortality data. Ecospace also relies on the Ecopath
	mass-balance approach for most of its parameterisation. Additional inputs are
	movement rates used to compute exchanges between grid cells, estimates of the
	importance of trophic interactions (top-down vs. bottom-up control), and habitat
	preferences for each of the functional groups included in the model. EcoOcean builds
	on EwE by incorporating 43 functional groupings, global datasets of catches, ex-vessel
	prices, biomass and distant water fleets from teh Sea Around Us project and the fleet
	statistics from FAO.
Output (key	Ecopath creates a static mass-balanced snapshot of the resources in an ecosystem and
variables)	their interactions, represented by trophically linked biomass 'pools'. The biomass pools
	consist of single species, or species groups representing ecological guilds. Pools may
	then be further split into ontogentic (juvenile/adult) groups that can then be linked
	together in Ecosim. Ecosim provides a dynamic simulation capability at the ecosystem
	level. Biomass flux rates among pools are expressed as a function of time varying
	biomass and harvest rates. Ecosim allows variable speed splitting to enable efficient
	modelling of the dynamics of both 'fast' (phytoplankton) and 'slow' groups (whales). It
	computes the effects of micro-scale behaviours on macro-scale rates: top-down vs.
	bottom-up control incorporated explicitly. Ecosim also includes biomass and size
	structure dynamics for key ecosystem groups (incorporating: multi-stanza file stage
	structure by monthly conorts, density- and fisk-dependent growth, adult numbers,
	relationship as an 'emergent' property of competition/predation interactions of inventies
	Predator prev interactions are moderated by prev behaviour to limit exposure to
	predation such that biomass flux patterns can show either bottom-up or ton-down
	control. This is a critical concept in Ecosim - that consumption rates or flows may be
	limited by 'risk management' behaviours of prev and predators at very small space-time
	scales. Through repeated simulations Ecosim allows for the fitting of predicted
	biomasses to time series data. Together, EwE build on the traditional stock assessment.
	using much more of the information available from these, while integrating to the
	ecosystem level. Ecospace represents biomass dynamics over two-dimensional space as
	well as time, i.e. biomasses are represented by equations and as varying with spatial
	coordinates as well as with time. EcoOcean provides a global database of fishing effort
	thus providing the opportunity to look at the future of marine biodiversity using a
	depletion index as a proxy for changes in species composition and abundance under
	different scenarios.
Geographical	Multi-scale, ecosystem models. Ecospace is the only component that provides spatial
coverage and	representation and uses user-defined grid cells. EcoOcean uses the 19 FAO statistical
resolution	areas of the world as its finest geographical scale. These areas can then be aggregated
	to a global total.
Temporal coverage	Ecopath does not have a temporal component. Ecosim provides data in monthly
and resolution	intervals in order to allow for seasonality and short life-spans. Ecospace time intervals
	are user defined, ranging from relatively short timescales (0.2 years) to longer time
	scales (2yrs). EcoOcean is run from monthly time steps from the year 1950.
Analytical technique	Ecopatin = mass-balance model; Ecosim = time-dynamic model; Ecospace = spatial
M. I.I. Y.Y	simulation model; EcoUcean = stratified global model.
wiodel developers	risheries Centre, University of British Columbia. Key developers include Daniel Pauly,
and/or owners	the LIPC Eight Control and Lonfogt Opport Entropy
Model dansk (1002: Econoth methodology published: 1007: Economy methodology published: 1007:
woder development	1992. Ecopain methodology published, 1997. Ecosim methodology published; 1999.

history	Ecospace methodology published; 2000: Ecosim II methodology published; 2007: EcoQcean methodology published
Target Group/users	EwE is aimed at policy-makers scientists and managers EwE has been used in
Target Group/users	fisheries policy exploration exercises with the FAO at a workshop at University of
	British Columbia in 2000 FwF has also been a component of global environmental
	assessments in particular the Millennium Ecosystem Assessment and the GEO-3 and -
	4 Ecological has been included in the scenario exploration for GEO-4
Calibratian	The core routine of Econoth is calibrated from the Econoth program of Doloving
Cambration	(198/a: 198/b) modified to render superfluous its original assumption of steady state
	Econath no longer assumes steady state but instead bases the parameterization on an
	assumption of mass balance over an arbitrary period usually a year Ecosim and
	Ecospace are both calibrated to the outputs of Ecopath Ecopath is in turn recalibrated
	based upon the outputs of Ecosim and Ecospace and rerun until evernal validation is
	achieved EcoOcean is parameterised using an array of global databases most of which
	are developed/made available through the Sea Around Us Project
	are developed/made available unough the Sea Around OS Project
Validation	(www.scdatoundus.org). Models are fitted to time series reference data with a long a reference period with as
vanuation	many different disturbance patterns, as it is possible to assemble. Developers
	recommend an iterative sterwise procedure for model fitting: Set up an Ecosim model
	and reference time series (of forcing inputs like fishing rates and indices of temporal
	system response like relative biomasses and estimated total mortality rates). Examine
	the simulated and observed time natterns of response indices look for groups that show
	large discrepancies in time pattern (trend) with particular emphasis on groups that have
	high biomass and are important prev or predator for other groups. As an example
	sardines and anchovy in a Benguela model (Shannon et al. 2004) showed upward trend
	in data but not in initial simulation results. Focus in turn on each such group, and
	examine alternative hypotheses for the discrepancy (by varying appropriate parameters
	to see if the model fit is improved). EcoOcean modelled fisheries effort for 1950-2003
	were validated against the reported totals for this period and fell within 10% of the
	reported total.
Uncertainty analysis	Semi-Bayesian sampling routine is employed to explicitly consider the numerical
	uncertainty associated with the inputs.
Key reference	Ecopath: Christensen & Pauly (1992), Ecosim: Walters et al. (1997)72; Ecosim II:
	Walters et al., (2000); Ecospace: Walters et al. (1999); EwE overview: Pauly et al.,
	(2000), -Christensen et al. (2000), Christensen et al., (2005); EcoOcean: Alder et al.,
	(2007)
Level of integration	Good - links traditional stock assessment data with actual population dynamics to
	provide a realistic system model that is integrated at the ecosystem level. This can then
	be combined with management regimes in Ecospace (e.g. Marine protected areas) and
	fisheries data in EcoOcean. The models in this series are linked in a hierarchical
	manner (i.e. outputs of Ecopath feed into Ecosim, outputs of EwE feed into Ecospace,
T • 1 (1	and these outputs reed into Ecoval).
Links to other	EWE has also been soft linked with a number of other models to develop the
models	Millennium Ecosystem Assessment scenarios and the GEO-5 and -4 projections. In the
	Madel a Terrestrial Diadiversity Madel and AIM and in the CEO analyzes the models
	Model, a refrestitiant Biodiversity Model, and Alivi, and in the GEO analyses the models
	CLUE S and AIM EacOccen was also used to inform the IAASTD (AgAssessment)
	Ecologian is also being developed as a marine equivalent of the MSA produced by the
	GLOBIO assessment
Ease of	Modelling process is complex and would need to be carried out by a specialist
use/accessibility	However all methods are fully and transparently published and discussed in the
	scientific literature. All data sets and the model are freely available to download online
	at: http://www.nceas.ucsb.edu/GlobalMarine
Website	http://www.ecopath.org/
Model structure	Econath

Model name	GEEM
Full model name	General Equilibrium Ecosystem Model
Model type	Biogeochemical model
Subtype	Ecosystem model
Thematic coverage	Trophic interactions, population dynamics, fisheries management, resource
	valuation, simulations.
Input (key drivers	For each species in the food web being studied the following energy
and pressures)	parameters are used: embodied energy; energy supplies; variable respiration;
	fixed respiration; and growth rates.
Output (key	For each species in the food web being studied the following energy
variables)	parameters are calculated for period t: populations; energy demands; energy
	prices; and net energies.
Geographical	Multi-scale, ecosystem model based around food webs. Resolution measures
coverage and	are not applicable as spatial representation of outputs is not available
resolution	II I I I I I I I I I I I I I I I I I I
Temporal coverage	For the individual organism the model is non-stochastic and time is omitted.
and resolution	Omitting time eliminates dynamic aspects such as age structure issues.
	however it is necessary for tractability and to be consistent with applied
	general equilibrium (AGE) models. The model has two components: short-
	run and long-run equilibrium. The short run is defined as that time over
	which the populations of all species are constant. In the long-run, populations
	of species are variable: they adjust to move toward a long-run equilibrium in
	which all organisms have zero net energy and the short run equilibrium
	conditions hold. In long-run outputs, time steps are defined by period t.
Analytical technique	Statistical model which captures salient biological functions and provides
	numerical simulations of marine food webs which can be then integrated
	with extant economic models.
Model developers	The model was originally developed by John Tschirhart at the Department of
and/or owners	Economics and Finance. University of Wyoming. This research was
	supported by a U.S. Environmental Protection Agency grant and by the State
	of Wyoming.
Model development	The GEEM methodology was originally published in the Journal of
history	Theoretical Biology in 2000 It has since been built on and applied by many
	members of the scientific community
Target Groun/users	The model is recognised as being primarily aimed at policy-makers as it is
Tanget Group/users	assumed that improved policies will follow from models that incorporate
	both economies and ecosystems. As models of economies already exist the
	aim of this approach was develop an ecosystem model that is compatible
	with these economic models and which also contures salient biological
	features Besides these henifits the GEFM is also identified as being useful
	for addressing nurely biological issues and so is also targetted at the scientific
	community. GEEM has been recognised by FAO as an approach for

	integrating ecosystem considerations into their fisheries models.
Calibration	Parameters within the boundaries defined by the validation methodology can
	be calibrated through statistical estimation applied to sample data from well
	defined populations. E.g. To estimate a supply function for an organism, data
	would include calories of energy and grams of biomess exchenged between
	predator and prey under varying climatic conditions and abiotic
	surroundings.
Validation	The bounds on parameters can be set through validation by the following
	data: observations about the relationships between population densities and
	predation; necessary and sufficient conditions for a maximum to the net
	energy problem; and estimates of ecological efficiences. In the simulations,
	parameter values were chosen so that the computed ecological efficiences
	were within an order of magnitude of efficiences observed in field work.
Uncertainty analysis	Not specified
Key reference	Tschirhart, 2008
Level of integration	Limited - model only considers energy interactions and the trophic dynamics
	of an ecosystem. However, when linked with an economic model, economic
	valuation of these relationships under change can be quantified and thus
	provide an end result with a much higher level of integration.
Links to other models	The model has not yet been integrated into a wider assessment process. The
	model is designed to be linked with a general equilibrium economic model
	by identifying key variables that influence both systems and determining
	where to incorporate them. Humans interact with ecosystems in a myriad of
	ways that can be addressed by augmenting the net energy expression in the
	GEEM. Species populations are the most likely candidates for ecosystem
E	variables that can be included in economic models.
Lase of	Modelling process is complex and would need to be carried out by a
use/accessionity	specialist. However, all methods and results are fully and transparently
	deventeed and discussed in the scientific interature. The model calmot be
Wobsite	Not applicable
Commonts/romarks	The overall goal is to develop a general equilibrium ecosystem model that
Comments/remarks	vields organisms' demands for and sumplied of biomass and to design the
	model in a way that allows it to be integrated with a general equilibrium
	model of an economy Numerical simulations in the key reference use a
	marine food web in Alaska to illustrate the model and to show several
	simultaneeous predator/prev relationships prev switching of the top predator
	and energy flows through the web.
Model structure	Not available

Model name	ІСТНУОР
Full model name	
Model type	Biogeochemistry model
Subtype	Biodiversity, population dynamics and connectivity
Thematic coverage	Icthyoplankton dynamics, connectivity, species transport
Input (key drivers and pressures)	Individuals are characterised by state variables: age (day), length (mm), stage (egg, yolk-sac larva, or feeding larva), location (longitude/latitude) and depth (m), and status (alive or dead). The physical environment is characterised by ocean state variables: current velocities (m s-1), temperature (*C), and salinity. The physical inputs are archived from oceanic simulations of the "Regional Oceanic Modelling System" (ROMS) or the "Model for Applications at Regional Scale" (MARS).
Output (key variables)	Icthyop offers two functioning modes. The first allows a visualisation of the transport of virtual eggs and larvae in a user friendly graphic interface. The second mode enables the running of a series of simulations based on pre- defined sets of parameters, with a minimalist interface.
Geographical coverage and	The environmental state variables are provided on a discrete three- dimensional grid by archived simulations of the ROMS or MARS oceanic

resolution	models. An example of a typical spatial scale used to characterise the
	environment is the ROMS southern Benguela configuration grid. It extends
	from 28 - 40*S and from 10 - 24*E. The horizontal resolution ranges from
	9km at the coast to 16km offshore. The vertical resolution ranges from 1 to
	$\sqrt{2}$ A $\frac{1}{2}$
	4./If at the surface and from 5.1 to 1050m at the bottom of the ocean. The
	Icinyop model sees the Eulerian velocity field at the same spatial scale as the
	Eulerian primitive equation models. Subgridscale parameterisations can be
	added in the IBM to address scales unresolved by the primitive equation
	models. The fields of salinity, current velocities, and temperature are
	interpolated in space to provide values at any individual location in Icthyop.
Temporal coverage	In ROMS, the current velocities, temperature, and salinity are typically
and resolution	averaged over time and stored every day or so. In Icthyop, they are
	interpolated in time to feed the Icthvop IBM time step. Simulations consist of
	tracking the locations and properties of the individuals (typically during a
	few weeks or months) 'Davtime' in Icthyon is defined as from 7am to 7nm
	All temporal variables can be adjusted in Icthyon by the user
Analytical technique	individual-based model (IBM) designed to study the effects of physical and
Analytical technique	high biological factors on the dynamics of fish ages and larvae
Model developer-	This lava piece of coffware is a collaborative work between In-titit
and/or owners	Pacharaha pour la Davalannament (IDD, teame D070 CEODEC 1 D007
anu/or owners	ECO IID) from Erange University of Cana Town (UCT) and Marine 9
	ECO-UP) from France, University of Cape Town (UCT) and Marine α
	Coastal Management (MCM) from South Africa, and Instituto del Mar del
	Peru (IMARPE) from Peru. The main contact for this work is Christophe Lett
	(IRD) and can be contacted at christophe.lett@ird.fr. PREVIMER provided
	financial support for this project.
Model development	The program is written in Java and requires the Java Runtime Environment
history	(JRE). The tool is distributed as a package that contains the program code,
	libraries and a basic example of ROMS output file. The Ichthyop project also
	includes the Public javadoc. Icthyop was most recently updated/redeveloped
	in 2008. Previous/modified versions of this method have been used since
	2002 and 10 peer-reviewed publications concerning Icthyop have been
	released in this 6 year period. All references can be found at
	http://www.ur097.ird.fr/projects/ichthyop/index.php.
Target Group/users	The aim of Icthyon is to provide an easily available user-friendly model for
Tanger Group, asers	icthyonlankton dynamics. Through providing this tool. Icthyon aims to help
	structure the community (assumed to be primarily academic and government
	scientists) that uses such tools. Previous (prior to 2008)/modified versions of
	this tool have been used to investigate the effects of physical and biological
	factors on the dynamics of anchora (Engraulis encrosicolus Engraulis
	ringong) and sarding (Sardingna sagay) ishthyonlankton in the southern
	Denguals and in the northern Humboldt unwalling systems. These works
	Bengueia and in the northern runnbold upwennig systems. These works
	associated institut de Recherche pour le Developpement (IRD, teams R079
	GEODES and R09/ ECO-UP) from France, University of Cape Town (UCT)
	and Marine & Coastal Management (MCM) from South Africa, and Instituto
	del Mar del Perú (IMARPE) from Peru. All references can be found at
	http://www.ur097.ird.fr/projects/ichthyop/index.php.
Calibration	Icthyop is calibrated to user defined variables on icthyoplankton and to the
	ROMS/MAR physical variables on temperature, salinity and current velocity.
Validation	The advection part of the movement submodel has been tested by recording
	trajectories of individuals and comparing them to trajectories obtained using
	two other Langrarian tools ("Roff" and "Ariane").
Uncertainty analysis	Not specified
Key reference	Lett et al., 2008
Level of integration	Limited - focuses primarily on the biological aspects of icthyoplankton and
	the physical parameters that affect their dynamics.
Links to other models	The model has not vet been integrated into a wider assessment process
Links to other models	Icthyon is designed to be linked to either the ROMS or MARS models to
	supply physical parameters and can also be linked to models that have been
	integrated with ROMS or MARS. For example, plankton concentrations can
	he provided if a NDZD biogeochemical model is sounded to DOMS. Letterer
1	be provided if a INPLD diogeochemical model is coupled to KOMS. ICINYOP

	itself is a product of five integrated sub-models.
Ease of	Good - Icthyop is designed to be accessible and easy to use. The software is
use/accessibility	freely available for download and a user manual is available at
-	http://www.ur097.ird.fr/projects/icthyop/. Output files are in netcdf format
	and can be post-processed easily. Routines in R can be sent upon request for
	plotting trajectories or computing the numbers of individuals transported
	from pre-defined release (spawning) areas to pre-defined destination
	(recruitment) areas. Ichthyop is a tool designed to be shared within the
	community using models coupling physics with ichthyoplankton dynamics.
	Though it has been historically developed to study the dynamics of small
	pelagic fish ichthyoplankton in upwelling systems, Ichthyop is a generic tool
	in the sense that it incorporates the most important processes involved in
	ichthyoplankton dynamics. Using Ichthyop for other species in other systems
	may imply a few changes in the source code (e.g., changing the growth
	function, implementing a specific larval vertical migration scheme, etc.).
	This code is organized simply, commented and documented, which should
	make it easy to modify by a user with basic programming skills.
Website	http://www.ur097.ird.fr/projects/ichthyop/index.php
Model structure	Not available. Icthyop consists of five sub-models: Spawning, Movement,
	Growth, Mortality, and Recruitment.

Model name	Impact of Climate Change on Global Biodiversity
Full model name	
Model type	Biodiversity model
Subtype	Bioclimatic Envelope Model
Thematic coverage	Climate change, global marine biodiversity, species turnover, niche-based model
Input (key drivers and pressures)	Current species distribution (latitudinal range; depth range; affinity to certain habitats; known distribution boundaries from published literature or expert knowledge); Environmnetal preferences of species (sea water temperature; bathymetry; habitats; and distance from sea ice); Population dynamics (Larval and adult dispersals; immigration; intrinsic population growth and extirpation; carrying capacity of area); Climate change projections to 2050 (NOAA/GFDL Coupled Model amd SRES Scenarios); Logistic population growth model.
Output (key variables)	Predicted changes in species distributions (changes in abundance per time/cell/species) - results for summer and winter distributions are provided seperately; Average frequency of invasion and local extinction events to identify hotspots of climate induced impacts; Median polward shift in distribution centroids.
Geographical coverage and resolution	Global; 30' X 30' grid cell size. Can be scaled to local and regional levels.
Temporal coverage and resolution	Species preferences are calculated from environmental data from 1980 to 2000. Model provides current species richness (average from 2001 to 2005), then future predictions for 2050 (average from 2040 to 2060).
Analytical technique	Bioclimatic Envelope Modelling
Model developers and/or owners	The model was developed by William Cheung, Vicky Lam, and Daniel Pauly at the Sea Around Us Project, Fisheries Centre, Aquatic Ecosystems Research Laboratory University of British Columbia. The model development was funded partially by the University of Western Australia and is a contribution of the Sea Around Us Project, which was initiated and is funded by the Pew Charitable Trusts. The application of the model to assessing the impact of climate change on marine biodiversity was funded by the Pew Charitable trusts through the Sea Around Us Project.
Model development history	Model published in 2008. This publication will be the first of several planned articles on global warming effects on marine communities and fisheries, with the model at its core being gradually modified and improved as applications

	are completed.
Target Group/users	The model currently gives policy-makers, the scientific Community, and the
	public a quantitative picture of the scale of the issue. The authors consider
	that the global analysis presented in the paper is a first step towards
	developing marine conservation policy in the face of climate change. This
	global picture is also effective in building consensus and initiating actions
	among nations, societies and stakeholders to address this problem. As the
	model is developed to be accurate at finer scales, the results can help design
	management systems and develop indicators and monitoring programmes.
Calibration	Species distributions were initially calibrated to the Sea Around Us Project
	(http://www.seaaroundus.org) data and were then further refined by
	incorporating habitat preference data from FishBase
	(http://www.fishbase.org) for fish and SeaLifeBase for other taxa
	(http://www.sealifebase.org). Climate scenarios were calibrated to the NOAA
	Geophysical Fluid Dynamics Laboratory (GFDL).
Validation	The model was validated in the following ways: Simulated changes in
	distributions of four commercially exploited species in 30 years under two
	scenarios of global sea temperature change from SeaLifeBase and FishBase
	datasets as well as from Phillips et al. (1992) for the Western Australian rock
	Lobster; the possible effects of climate-change induced shifting of coral reefs
	on associated species was evaluated using the UNEP-WCMC coral reef
	dataset; key aggregate features of the results (e.g. Annual rate of latitudinal
	shift) correspond to the available field estimates; finally the effect of change
	in sea ice coverage on polar species was tested based on information from
	perf-reviewed literature. Future results from local and regional studies can be
	used to validate the model, and past climate and species distribution data can
	The model is suitable for an databing amountainty and and a suitable for an databing amountainty and an and a suitable for an databing amountainty and a suitable for an an an and a suitable for an an and a suitable for an
Uncertainty analysis	The model is suitable for undertaking uncertainty analyses. Sensitivity
	analysis of major parameters showed that the direction of the projections are robust to the uncertainty of those parameters
Kov roforonco	For Model Background: Cheung et al. 2008
Key reference	For Model Application: Cheung et al. (in press)
Level of integration	Good - Biodiversity data (bioclimate model is combined with population
Level of integration	dynamics making it more robust) is integrated with oceanographic measures
	and climate change scenarios.
Links to other models	The model has not vet been integrated into a wider assessment process. The
	overall model described is formed through the linking of a range of models
	and scenarios: NOAA/GFDL Coupled Models; SRES Climate Scenarios;
	Logistic population growth model; Population-dynamic model; Advection-
	diffusion reaction model for larval dispersal; ECOSPACE (Eulerian spatial
	ecosystem simulation model)
Ease of	Complex modelling process, however the output distribution maps are simple
use/accessibility	to understand. All distribution maps are available through the
	http://www.seaaroundus.org website. All methods are fully and transparently
	published and discussed in the scientific literature, however, output maps are
	not yet freely available online.
Website	Not applicable

Model name	RamCo
Full model name	
Model type	Integrated dynamic model
Subtype	Decision Support System
Thematic coverage	Coastal zone, assessment, decision support, management
Input (key drivers	Spatial information from GIS and static and/or descriptiveGIS operations. This
and pressures)	occurs on two scales: Micro-scale drivers include sea use functions (seagrass; coral
-	reef); Land Use functions (Agriculture; Rice culture; Shrimp culture; Industry;
	Tourism; Urban residential; Rural residential; Mangrove; Nature/forest); and Land
	use features (Sea; Inland water; Airport; Harbour; Beach); and Macro-scale drivers
	based around land use, water, ecology and the economy.
Output (key	An almost complete integrated model of the coastal zone, from which the user can
variables)	specify which variables are most relevant to their needs.
Geographical	Version 1.0 and 2.0 are applied to the Coastal zone of SW Sulawesi (Indonesia).
coverage and	RAMCO can handle cellular models with dimensions up to 500 by 500 cells. In its
resolution	actual form, it is most useful for modelling problems on grids which resolution
	varies from 50 to 500 meters. RamCo has the capability to deal with spatial
	dynamics at different levels within the same integral models. More in particular
	RAMCO models will generally have two strongly coupled components: one for
	macro-level, long range and large scale processes and a second one for processes
	operating on the micro-level, short range and micro-scale. Sub-models will in
	general operate at one level, but may exchange information with sub-models at the
	other level.
Temporal coverage	Model allows for a multi-temporal dynamic modelling framework. The time
and resolution	horizon is 25 years.
Analytical technique	Integrated spatial models in which natural, social and economic processes are fully

	linked on an appropriate detailed scale. A RAMCO model consists of Model Building Blocks (MBB's) that contains the code required to calculate and execute
	mathematical operations varying from a single operation (such as the sum of two
	numbers) to a list of operations (set of mathematical equations). MBB's are
	connected to one another by means of MBB Connectors.
Model developers	RamCo was financed by and is a product of the National Institute for Coastal and
and/or owners	Marine Management (RIKZ) and the associated Coastal Zone Management centre (CZM) the Hague the Netherlands. It was developed by the consortium consisting
	of INFRAM BV (Zeewolde the Netherlands). RIKS. Twente University (Enschede)
	and Maastricht University. RamCo 1.0 - was developed as part of the project:
	"RAMCO: Generic Decision Support System for the Rapid Assessment phase of
	Sustainable Coastal Zone Management, financed by the National Institute for
	Coastal and Management Centre (CZMc), Kijkswalerslaal, and the associated Coastal Zone Management Centre (CZMc). Contract RKZ-308 and carried out by
	the consortium consisting of INFRAM by (Zeewolde, main contractor), and RIKS
	bv (Maastricht). RamCo 2.0 - 2.0 of RAMCO is the result of the Land Water
	Environment Information technology (LWI) - Project "Integral Systems Analysis",
	in the "LWI - Estuaria and Coasts" project group. The developers group consists of: INEPAM by PIKS by and WI Dolff Hydraulias (Dolff) The Technical University
	of Twente. Department of Civil Engineering Technology & Management.
	(Enschede) participated as a sub-contractor of INFRAM by.
Model development	RAMCO was originally developed in October 1996 for the National Institute for
history	Coastal and Marine Management (RIKZ) and the associated Coastal Zone Management Contra (CZMa) The version 2.0 of PAMCO is the result of the Lond
	Watagement Centre (CZMC). The version 2.0 of KAMCO is the result of the Land Water Environment Information technology (LWI) - Project "Integral Systems
	Analysis", in the "LWI - Estuaria and Coasts" project group (user manual is dated
	1999). The SW Sulawesi model makes extensive use of knowledge gathered in
	project W01.60 of the Netherlands Organization for the Advancement of Tropical
Tangat Crown/usang	Research (WOIRO). This scientific material remains the full property of WOIRO.
Target Group/users	The end-users of RamCo 2.0 are: National Institute for Coastal and Marine
	Management (RIKZ) and the associated Coastal Zone Management Centre (CZMc),
	and the Netherlands Organization for the Advancement of Tropical Research
	(WOTRO). RamCo has been applied to a coastal zone near Ujung Pandang in
	zone strongly urbanizes under the influence of a growing population (annual growth
	\pm 3%) and the external economic growth. RamCo allows policy-makers to test their
	policy choices under the influence of climate changes, demographic growth, or
	changing economic demand.
Validation	Not specified The model has a validity interval incorporated within which the parameters must be
vanuation	kept.
Uncertainty analysis	Not Specified
Key reference	Uljee et al., 1999, available at:
	nup://www.nks.ni/kiksGeo/projects/ramco/kamCo2.pdi For the Sulu Sulawesi Case study: de Kok & Wind 1996 and de Kok & Wind
	1999
Level of integration	Excellent - physical, environmental, economic and social processes that typical
	coastal zone dynamics generally, and those of Sulawesi in particular. To achieve
	this, use is made as much as possible of existing scientific knowledge, methods,
Links to other models	The model has not yet been integrated into a wider assessment process. RamCo
	integrates existing models dealing with physical, ecological and socio-economic
	impacts of coastal zones have been reviewed and adapted in view of their
Ease *	Integration into a multi-scale, multi-temporal dynamic modelling framework
Lase of Use/accessibility	(http://www.riks.nl/projects/RamCo) Appears relatively easy to use but presently
ascraccositility	is only applicable for the SW Sulawesi region. Neither software development with
	the tools provided in the RAMCO package nor the application of the RAMCO
	package to a case study is permitted. Software or application development and

Model name	Reefs at Risk
Full model name	
Model type	Biodiversity model
Subtype	Indicator model
Thematic coverage	Coral reefs, marine biodiversity, human influence, threat indices
Input (kev drivers	Coastal development threat factors (Cities: Settlements: Airports and Military
and pressures)	bases; Mines; Tourist resorts; Embayments); Marine-based Pollution threat
·····	factor (Ports; Oil-related threats; Shipping-related threats); Overexploitation
	threat factor (Overfishing; Destructive fishing); Inland Pollution and Erosion
	threat factor (Hydrological modelling and geographic overlays).
Output (key	A map based indicator of problem areas around the world where in the
variables)	absence of good management, coral reef degradation might be expected, or
	predicted to occur shortly, given ongoing levels of human activity.
Geographical	Global coral reefs; 4km resolution
coverage and	
resolution	
Temporal coverage	Assessment of current state (1998) - does not include likely future threats
and resolution	posed by population growth or climate change.
Analytical technique	Results are based on a series of distance relationships correlating mapped
_	locations of human activity such as ports and towns, oil wells, coastal mining
	activities, and shipping lanes, with predicted risk zones of likely environment
	degradation. Detailed subnational statistics on population density, size of
	urban areas, and land cover type were also incorporated into the analysis.
	Data on rainfall and topography was also used to help estimate potential run-
	off within watersheds. Distance rules defining threat zones were established
	for each component indicator using information on the known locations of
	more than 800 reef sites documented as degraded by human activity by one
	of the four factors. Minimum distances were esblished through expert review
	and input, and by determining the most conservative set of rules that, when
	taken in aggregation for any one of the four threat categories, encompassed at
	least two-thirds of all known degraded sites affected by activities related to
	that category. Reefs are graded as under "low", "medium" or "high" threat.
Model developers	The initial Reefs at Risk Global Analysis was published as a joint venture by
and/or owners	the World Resources Institute (WRI), International Center for Aquatic Living
	Resources Management (ICLARM), World Conservation Monitoring Centre
	(WCMC), and the United Nations Environment Programme (UNEP). Lead
	authors: Dirk Bryani, Lauretta Burke, John McManus and Mark Spalding.
	I he report received funding from UNEP, The Bay Foundation, The David &
	Luche Packard Foundation, The Henry Foundation, The Swedish
	Environment Protection A gency
Model development	1008: "Peefs at Pisk: A Man Based Indicator of Threats to the World's Coral
history	Reefs" nublished: 2002: "Reefs at Risk in South-Fast Asia" regional analysis
instory	was released: 2003: Methodology was used for a local analysis on
	"Highlighting coral reefs in Coastal Planning and Management in Sabah
	Malaysia" 2004 "Reefs at Risk in the Caribbean" regional analysis was
	released: 2005: methodology was used to produce the "Belize Coastal Threat
	Atlas". The Reefs at Risk model is still being further developed for a Reefs at
	Risk Revisited analysis to provide an update of the original Reefs at Risk
	analysis a decade on. The update will use improved modeling methods and
	higher-resolution data to provide a detailed examination of human pressures
	on coral reefs, implications for reef condition, and projections of associated
	economic impacts in coastal communities. This analysis will be 20 times
	more detailed than the original Reefs at Risk and will also include climate-
	related threats, such as coral bleaching and ocean acidification.
Target Group/users	The model was calibrated to a standard four kilometre resolution consistent
-	with the dataset of shallow coral reefs from the World Conservation
	Monitoring Centre. This was carried out to mitigate spatial accuracy issues
	associated with using a range of different datasets.
Calibration	The model was calibrated to a standard four kilometre resolution consistent

	with the dataset of shallow coral reefs from the World Conservation Monitoring Centre. This was carried out to mitigate spatial accuracy issues
	associated with using a range of different datasets.
Validation	Draft risk maps were revised and vetted at a global workshop attended by
	coral reef experts from around the world. Final draft maps underwent a
	second series of review by these and other experts. Overall, the Reefs at Risk
	indicator accurately classifies over 80 percent of sites known to be degraded
	by humans as "at risk". This was based on a comparison between Reefs at
	Risk results and 800 sites documented in ICLARM's Reefbase $(y,2)$ as
	having been degraded by human activity
Uncertainty analysis	Not specified however uncertainties are recognised based on the
	inconsistencies age and lack of availability of datasets. A number of regions
	are identified in the Technical Notes of the report where actual threats may
	not be accurately represented by the Reefs at Risk indicator based on expert
	review
Kev reference	Bryant et al 1998 Available online: http://pdf wri org/reefs pdf
Level of integration	Good - uses a variety of datesets to represent anthropogenic threat including
Level of integration	data on nonulation resources tourism pollution from fuel and transport
	fisheries including destructive fishing practices and hydrological models to
	represent inland pollution and erosion
Links to other models	The model has not wat been integrated into a wider assessment process.
Links to other models	Hydrological modelling was used in the development of the inland pollution
	nydrological modelning was used in the development of the infand politician
	and crosson uncat factor and then integrated into the overall Keels at Kisk
Ease of	Modelling process is clear and well described in the online report. Outputs
Ease of	Modeling process is clear and well described in the online report. Outputs
use/accessionity	are easy to understand as spatial maps with the unleat modes being
	categorised as low, medium, or night risk. The publication is free to access at:
	nup://www.wn.org/publication/reets-risk-map-based-indicator-potential-
	inreals-worlds-coral-reefs and some of the data layers and GIS models are
	available to download for free from the WRI website. CDRom with all the
	data layers and GIS models used in the analysis are available from WRI fon
	request. Contact Lauretta Burke for more information: lauretta@wri.org.
Website	http://www.wri.org/publication/reefs-risk-map-based-indicator-potential-
<u> </u>	threats-worlds-coral-reefs
Model structure	Not available

1.1.9 Regional models/assessments

Model name	ATEAM
Full model nome	Advanced Terrestrial Econystem Analysis and Modeling
Full mouel name	Advanced Tenesulai Ecosystem Analysis and Wodeling
Sabtan a	
Subtype	
I nematic coverage	vulnerability of ecosystem services: agriculture, forestry, carbon storage and
	energy, water, biodiversity and tourism
Input (key drivers	socioeconomic factors, atmospheric greenhouse gas concentrations, climate
and pressures)	factors, and land use
Output (key	vulnerability maps for different ecosystem services (agriculture, wood
variables)	production, carbon storage, soil fertility, biodiversity, natural beauty)
Geographical	Europe 15 + Norway and Switzerland, 10' by 10' grid
coverage and	
resolution	
Temporal coverage	1990, 2020, 2050, 2080
and resolution	
Analytical	link between ecosystem service provision and land use (socio-economic
technique	indicators extrapolated via regression models and aggregated via fuzzy models)
	meta-model
Model developers	Potsdam Institute for climate impact research (PIK). Centre d'Ecologie
and/or owners	Fonctionelle et Evolutive (CEFE). ETH Zürich Wageningen University Max
und of owners	Planck Institute für Biogeochemie Lund University Université Catholique de
	Louvain Centre de Recerca Ecológica i Anlicacions Forestals (CREAF)
	Institute for arable crons research (RES) University of Southamption (SOTON)
	Universided de Castille La Mancha (LICLM), European Forest Institute (EFI)
Madal davalanment	first regults published: 2005
history	liist results puolisileu. 2005
Tavaat Caasa haasa	The goal of the ATEAM project was to develop alignets scorperios for Europe
Target Group/users	The goal of the ATEAM project was to develop climate scenarios for Europe,
	employed a suite of ecosystem and hydrological models in order to test estimate
	the sensitivity of systems to these changes, developed indicators of adaptive
	capacity for the potential risks, engaged in an extensive, projectiong dialogue
	with stakeholders about methods and results, and initiated a high-level training
	component for its methods, leading to five international summer schools
Calibration	Not available
Validation	Not available
Uncertainty	Not available
analysis	
Key reference	Metzger et al., 2005 (Int J Appl Earth Observ Geoinf 7, 253-267), Metzger et al.,
	2006 (Agric Ecosyst Environ 114, 69-85), Metzger et al., 2008 (Reg Environ
	Change 8, 91-107),
Level of integration	Different models were included in this work, the level of integration between
	thos is unknown.
Links to other	IMAGE outputs were used for land use change and driving forces for different
models	scenarios, LPJ was used for water and carbon
Ease of	The ATEAM vulnerability-mapping tool can be downloaded from:
use/accessibility	http://www.pik-potsdam.de/ateam/.
Website	http://www.pik-potsdam.de/ateam/
Model structure	Fig. 1 The structure of the
	ATEAM project with the multiple changes in Vulnerability maps
	scientists and stakeholders (from Schröfer et al. 2004) global change: models services
	cimate, combined indicators
	sotio economic, changes in changes in
	Nitrogen deposition aspects adaptive
	capacity
	dialogue between stakeholders and scientists

Model name	InVEST
Full model name	integrated valuation of ecosystem services and tradeoffs
Model type	regional assessment
Subtype	
Thematic coverage	ecosystem services, biodiversity conservation, commodity production and tradeoffs
Input (key drivers	drivers: market conditions and incentive-based conservation payments (policies), inputs:
and pressures)	land use maps; basic information about the landscape, land quality, management
	practices, infrastructure and governance (simple or complex model, depending on data
	availability)
Output (key	future land use, potential water yield, carbon sequestration, agricultural production,
variables)	biodiversity, balance sheets for trade-offs between ecosystem services, optimal land
	allocation for different services
Geographical	regional, resolution flexible; case studies: Willamette Basin, Oregon, USA (30 m x 30 m
coverage and	grid, for results: 500 ha units); Amazon basin. Currently a global assessment of ecosystem
resolution	services is done with InVEST. Results have not been published yet.
Temporal coverage	Calibration depending on land use maps available; 50 year projections, results on annual
and resolution	basis
Analytical	empirical-statistical models
technique	
Model developers	Natural Capital Project (Stanford University), The Nature Conservancy, and World
and/or owners	
Model development	published: 2008
Tanaat Carry	Level monogers and statisheddars. The sime of the Natural Capital Deviast is to align
Target Group/users	Local managers and stakeholders. The ann of the Natural Capital Project is to angli
Calibratian	Model was calibrated based on historical data on land use change, calibration data needed
Cambration	for each regional application
Validation	Not available
Uncertainty	Not available
analysis	Not available
Key reference	Nelson et al. 2009 (Frontiers in Ecology and Evolution 7, 4-11) Nelson et al. 2008 (PNAS)
ney reference	105, 9471-9476)
Level of integration	Low integration between different submodels: land use model predicts land use based on
	economic considerations and policies, after that changes in ecosystem services and
	biodiversity are calculated; no feedback between ecosystem services and land use change
	incorporated yet
Links to other	unknown
models	
Ease of	Available at: http://www.naturalcapitalproject.org/InVEST.html, Model equations are
use/accessibility	given in Nelson et al., 2009 (supplement) Running InVEST effectively does not require
	knowledge of Python programming, but it does require basic to intermediate skills in
	ArcGIS.
Website	http://www.naturalcapitalproject.org/InVEST.html
Comments/remarks	Global assessment with InVEST is forthcoming.

Model name	Naidoo et al., 2008
Full model name	
Model type	global assessment (mapping)
Subtype	
Thematic coverage	mapping of ecosystem services, partly based on biophysical models,
	synergies with biodiversity conservation
Input (key drivers	land cover, climate, soil
and pressures)	
Output (key	carbon sequestration, carbon storage livestock production, water supply,
variables)	species distribution
Geographical	global, maximum resolution 0.5°
coverage and	
resolution	
Temporal coverage	No future predictions, current situation only
and resolution	
Analytical technique	linear optimalization approach for habitat protection
Model developers	see reference
and/or owners	
Model development	
history	
Target Group/users	For exploratory purposes only, scientists
Calibration	Not applicable
Validation	Not applicable
Uncertainty analysis	Not applicable
Key reference	Naidoo et al., 2008 (PNAS 105, 9495-9500)
Level of integration	The different models/methods used are not integrated. They were used for
	mapping of present situation only and not for predictions.
Links to other models	TEM (terrestrial ecosystem model) was used to estimate annual carbon
	exchange rates, water provision was estimated using WaterGAP.
Ease of	The approach and input data have been described (Naidoo et al, 2008) and
use/accessibility	could be repeated

Website	Not applicable
Model structure	Not available

Model name	PLM
Full model name	Patuxent landscape model
Model type	Integrated assessment model
Subtype	regional assessment
Thematic coverage	land use effects on ecosystem services (linked ecological economic model)
Input (key drivers	human land use policies (socio-economic), land management (N input), climate
and pressures)	
Output (key	land use pattern, water quality, NPP, water cycle, soil nutrients, land prices based
variables)	on surroundings
Geographical	Patuxent River watershed, Maryland, USA; variable resolution, maximum
coverage and	resolution: 200 by 200m
resolution	
Temporal coverage	baseline: 1990, historial data (from 1650) and future projections, time steps differ
and resolution	between model components: daily (hydrology) to annual (economics)
Analytical	
technique	
Model developers	R. Costanza
and/or owners	
Model development	software: STELLA
history	
Target Group/users	Local managers
Calibration	A modular, multiscale approach was used to calibrate and test the model. Model
	results showed good agreement with data for several components of the model at
	several scales. Calibration was done against field data sets for forest growth and
	hydrological parameters and against results from EPIC for crop yields.
Validation	Historical validation (time series data).
Uncertainty	sensitivity analysis done for different modules
analysis	
Key reference	Costanza et al., 2002 (Ecol. Monogr. 72, 203-231)
Level of integration	Socio-economic component and general ecosystem model with modules for
	hydrology, nutrient, plant, consumers and human-dominated systems
Links to other	Unknown (PLM formed the basis for GUMBO)
models	
Ease of	Not available online
use/accessibility	
Website	http://www.uvm.edu/giee/PLM/home.html

Model name	Swallow et al., 2009
Full model name	
Model type	regional assessment
Subtype	
Thematic coverage	tradeoffs and synergies among ecosystem services
Input (key drivers	land use change, agricultural production
and pressures)	
Output (key	water yield and reguation, erosion control
variables)	
Geographical	Lake Victory basin; multiple spatial scales, smallest: 5km by 2.5km (arial
coverage and	photograph), sub-basin, country division, river basin
resolution	
Temporal coverage	no predictive modeling, current and past situation only
and resolution	
Analytical technique	empirical-statistical
Model developers	See reference
and/or owners	
Model development	Not applicable
history	
Target Group/users	Results from the study are meant for agencies, both state and non-state,
	concerned with rural development and environmental conservation in the
<i>a</i>	Kenya portion of the Lake Victoria basin
Calibration	SWAT-model was calibrated for the Vicotria basin.
Validation	Not available
Uncertainty analysis	Not available
Key reference	Swallow <i>et al.</i> , 2009
Level of integration	The SWAT model and the agricultural data were not integrated.
Links to other models	SWAT was used to model water and sediment yield
Ease of	Methodology has been described and could be repeated.
use/accessibility	NT / 1' 11
Website	Not applicable
Model structure	Not applicable

1.2 Can the model results be interpreted in terms of ecosystem goods and services?

1.2.1 Integrated assessment models

	Model name	AIM	GUMBO	IFs	IGSM	IIASA models	IMAGE	MIMES
Ecosystem services	Provisioning services	water supply, food and timber production	harvested organic matter, water supply, mined ores, and extracted fossil fuel	Agricultural production, including marine fishing and aquaculture	agricultural production (can be separated into crops, livestock and forestry)	timber production, agricultural food production, renewable water resources	Agricultural production, including grass/fodder production and livestock/milk production, demand for wood products, timber, fuelwood	Food production, production of raw materials
	Supporting services	Not available	Soil formation (decomposition), nutrient (N) cycling, disturbance regulation	Not available	SOC (soil organic carbon)	Not available	Soil fertility	Soil formation, nutrient cycling
	Regulating services	greenhouse gas emissions, air pollution, carbon sequestration, human health (malaria	gas regulation (C flux), climate regulation (temperature), waste assimilation, disturbance regulation	Human health, CO ₂ emissions	human health impacts, sea level, air pollution, carbon emissions	carbon sequestration	Carbon flux, carbon plantations, ocean carbon model, water- erosion sensitivity, air pollution, soil	climate regulation, waste assimilation , disturbance regulation

	Model name	AIM	GUMBO	IFs	IGSM	IIASA models	IMAGE	MIMES
		distribution), flood damage	(variation in total biomass)		and stocks		moisture	
	Cultural services	Not available	recreation, cultural (positively related to total biomass and density of social network, negatively related to human population size)	Not available	Not available	Not available	Not available	recreation, cultural
ţy	Species diversity	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	MSA via GLOBIO	Not applicable
iversi	Genetic diversity	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
biod	Ecosystem diversity	Vegetation distribution	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable

1.2.2 Economic models, scenario-building tools, IMPACT-WATER and CLUE

	Model name	PoleStar	Treshold 21	GTAP	ENV-Linkages	IMPACT-	CLUE
						WATER	
	Provisioning	water resources,	agriculture,	agricultural food	timber production,	agricultural food	None (but land
	services	raw materials and	consumption of	production	agricultural	production (crops	used for
u		agriculture	natural resources		production (crops	and livestock),	agriculture,
ten s			(renewable and		and livestock,	water supply	grazing, forestry)
sys ice			nonrenewable),		intensive and		
COS STV			resource depletion		extensive		
E			(e.g. forests)		production)		

	Supporting services	Not available	land degradation	Not available	Not available	Not available	Not available
	Regulating services	solid waste management, environmental loadings	soil erosion, greenhouse gas emissions, air and water quality (pollution)	Not available	Not available	Not available	Not available
	Cultural services	Not available	Not available	Not available	Not available	Not available	Not available
biodiversity	Species diversity	Not available	Not available	Not available	Not available	Not available	Not available
	Genetic diversity	Not available	Not available	Not available	Not available	Not available	Not available
	Ecosystem diversity	Not available	Not available	Not available	Not available	Not available	Land cover diversity explicit

1.2.3 Biogeochemical models

	Model name	IBIS	Agro-IBIS	CENTURY	LPJmL	PICUS	SAVANNA
	Provisioning	water runoff	water supply, crop	grass, tree and crop	runoff volumes, crop	timber production	livestock production,
	services		production	production, water	production		grass and timber
				supply (stream			production, water
				discharge)			supply (runoff, deep
s							drainage)
ice	Supporting	NPP, SOC, N balance	NPP, SOC, N balance	N, P and S balance,	annual NPP	nitrogen cycling in	NPP, nutrient cycling
erv	services			SOC		forests	
n s	Regulating	carbon balance (carbon	carbon flux, N	Water balance,	CO ₂ exchange, water	carbon sequestration,	water balance
ten	services	fluxes, SOC), water	leaching, water	decomposition, CO ₂	balance	soil moisture (water	
sys		regulation	regulation	flux, erosion		cycling)	
605	Cultural	Not available	Not available	Not available	Not available	Not available	Not available
H	services						
b i	Species	Vegetation	Vegetation	Not available	vegetation cover	forest species	Species distribution

diversity	composition	composition		(fraction of different	composition (diversity,	and abundance
	(functional types)	(functional types)		plant functional types	naturalness indicators)	(plants + animals)
				per grid cell),		
Genetic	Not available	Not available	Not available	Not available	Not available	Not available
diversity						
Ecosystem	Vegetation	Vegetation	Not available	Vegetation	forest species	community
diversity	composition	composition		composition	composition	composition

1.2.4 Hydrological models

	Model name	WaterGAP	E-SWAT	WBM
ystem services	Provisioning services	water supply	water supply	water supply, livestock production
	Supporting services	Not available	Not available	Not available
	Regulating services	Not available	erosion control	soil water content
Ecos	Provisioning services water services Supporting services Not average Regulating services Not average Cultural services Not average Species diversity not appendiversity Ecosystem diversity not appendiversity	Not available	Not available	Not available
ity	Species diversity	not applicable	not applicable	not applicable
biodiversi	Genetic diversity	not applicable	not applicable	not applicable
	Ecosystem diversity	not applicable	not applicable	not applicable

1.2.5 Biodiversity models

model	name	GLOBIO
		01010

MIRABEL Biodiversity

SAR species GARP-type

EUROMOVE

				intactness index	area relationship	models	
	provisioning	not applicable	not applicable	not applicable	not applicable	not applicable	not applicable
system inne	supporting	not applicable	not applicable	not applicable	not applicable	not applicable	not applicable
	regulating	not applicable	not applicable	not applicable	not applicable	not applicable	not applicable
COS	cultural and	not applicable	not applicable	not applicable	not applicable	not applicable	not applicable
y E	spiritual						
	species diversity	mean species abundance (MSA)	Not available	biodiversity intactness index	number of species	number of species	number of species
isi	genetic diversity	Not available	Not available	Not available	Not available	Not available	Not available
biodive	ecosystem diversity	Not available	habitats at risk	Not available	Not available	Vegetation composition/species distribution	Vegetation composition/species distribution

7.1.6 Ocean models I

	Model name	ASSETS	Atlantis	Aus-Connie - Australian Connectivity Interface	Cumulative Threat Model for the global ocean	EwE, EcoSpace & EcoOcean	GEEM
tem services	Provisioning services	Estuarine fisheries/aquaculture	Fisheries (inc. their ecosystem effects).	Ecosystem connectivity through genetic diversification (partial match to provisioning services)	Impacts on fisheries/aquaculture; ability of ecosystems to provide non-living resources.	Fisheries (inc. their ecosystem effects).	Fisheries (inc. their ecosystem effects).
Ecosys	Supporting services	Primary production, nutrient cycling	Population dynamics (Trophic controls); changes	Nutrient cycling; Larval recruitment to fisheries	Reduction in nutrient cycling ability (e.g. through dead	Population dynamics (Trophic	Population dynamics (trophic

	Model name	ASSETS	Atlantis	Aus-Connie - Australian Connectivity Interface	Cumulative Threat Model for the global ocean	EwE, EcoSpace & EcoOcean	GEEM
			to ecosystem community structure may impact on other ecosystem services; Ecological fluxes (biomass and nutrient limitations)		zones/pollution); Impacts on habitats and their services.	controls); Biomass and Fluxes.	controls); biological maintenance of resilience; changes to ecosystem community structure may impact on other ecosystem services;
	Regulating services	water quality	Not applicable	Not applicable	Impact ability of ecosystem to provide regulating services generally.	Not applicable	Not applicable
	Cultural services	Recreation	Economic valuation of resources	Not applicable	Impacts on recreation, aesthetic values and experience, spiritual enrichment etc.	Economic valuation of resources	Not applicable
liversity	Species diversity	dominance by most prolific algal species out-competes all others leading to a loss of species diversity overall. Also, localised dead zones.	Population dynamics and trophic structure.	larval dispersal and recruitment	Not applicable	Population dynamics and trophic structure.	Population dynamics and trophic structure
biod	Genetic diversity	dominance by most prolific algal	Not applicable	genetic connectivity	Not applicable	Not applicable	Not applicable

Model name	ASSETS	Atlantis	Aus-Connie - Australian Connectivity Interface	Cumulative Threat Model for the global ocean	EwE, EcoSpace & EcoOcean	GEEM
	species, reducing genetic diversity of system.		between ecosystems			
Ecosystem diversity	eutrophication leading to dead zones	'within ecosystem' diversity based primarily around trophic links and potential fisheries impacts on these.	ecosystem connectivity, dispersion of contaminants between ecosystems	Cumulative human impact scores for 20 marine ecosystems.	'within ecosystem' diversity based primarily around trophic links (EwE) and movement of species (Ecospace).	'within ecosystem' diversity based primarily around trophic links and potential human impacts on these.

1.2.7 Ocean models II

	Model name	Impact of	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
		Climate				
		Change on				
		Global				
		Biodiversity				
	Provisioning	Fisheries	Food security of	Coral reef	Fisheries	Ecosystem
u	services	(commercial	coastal systems;	fisheries; Raw	(understanding	connectivity i.e.
ter s		and artisanal).	Water	materials for	environmental	Genetic
sys ice			provisioning/water	medicines;	drivers and	diversification
co.			quality;	Other raw	bottom-up	(partial match to
E			commercial	materials	processes	provisioning

Model name	Impact of	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Climate				
	Change on				
	Global				
	Biodiversity				
		products provided by coastal zones.	(seaweed and algae for agar, manure etc.); Curio and jewellry; Live fish and coral collected for aquarium trade.	impacting fish populations; impacts of fisheries).	services)
Supporting services	Changes to ecosystem community structure may impact on other ecosystem services.	Supporting services related to coastal zones generally, e.g. Primary production, nutrient cycling, maintenance of habitats, population dynamics etc.	Maintenance of habitats; maintenance of biodiversity and genetic library; biological maintenance of resilience; mobile links between ecosystems; export of organic production between ecosystems; protection of adjacent shorelines - in doing so supporting wetlands,	Ecological fluxes (biomass and nutrient limitations); Lower trophic level habitat modelling for pelagic and benthic systems;	Larval dispersal and recruitment to fisheries; Nutrient cycling; Bottom-up support of food webs.

Model name	Impact of	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Climate				
	Change on				
	Global				
	Biodiversity				
			seagrass beds,		
			mangrove		
			fisheries,		
			population		
			centres etc.;		
			generation of		
			coral sand; build		
			up of land;		
			Nitrogen		
			fixation;		
			CO2/Ca budget		
			control		
Regulating	Not applicable	Ability of coastal	Waste	Not applicable	Not applicable
services		zone to provide	assimilation.		
		regulating services			
		generally; Water			
		provisioning/water			
	1.6.1.	quality;	D (1	NT / 11 11	NT / 12 11
Cultural	Artisanal fishing	Ability of coastal	Recreational	Not applicable	Not applicable
services	practices	zone to provide	value;		
		cultural and	ecotourism;		
		spiritual services	sustaining		
		generally.	local		
			iocai		
			aesthetic value		
			support of		
			cultural		
			religious and		
			spiritual values		
1	1	1	opinium varaeo.	1	1

	Model name	Impact of	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
		Climate				
		Change on				
		Global				
		Biodiversity				
	Species	shifts in species	impacts of	Threats to	lower trophic	larval dispersal
	diversity	distributions,	socioeconomic	species diversity	species	and recruitment
		invasions and	drivers on species		(phytoplankton,	
		extinctions.	diversity in the		zooplankton	
			coastal zone.		etc.) of pelagic	
					and benthic	
					systems.	
	Genetic	Not applicable	Not applicable	Threats to	Not applicable	genetic
	diversity			genetic diversity		connectivity
	·					between
						ecosystems
	Ecosystem	community	impacts of	Threats to	Ecological	ecosystem
ity	diversity	shifts in	socioeconomic	ecosystem (the	fluxes within	connectivity
SLO		ecosystems.	drivers on	coral reef)	ecosystems,	
live			ecosystem	diversity	dynamics of	
iod			diversity in the	-	viruses, marine	
þi			coastal zone.		trophodynamics.	

1.2.8 Regional models/assessments

	Model name ATEAM		InVEST	Naidoo et al.	Swallow et al.	Costanza et al.	
3	Provisioning	food production,	drinking water,	grassland	food production,	water supply,	
co: ste	services	wood	irrigation water,	production of	(water supply)	primary	
E y:		production,	food production,	livestock, water		production of	

	Model name	ATEAM	InVEST	Naidoo et al.	Swallow et al.	Costanza et al.
		energy production, water supply	timber production, non-timber forest products	supply		natural vegetation, plantations, grasslands, agriculture
	Supporting services	soil fertility maintenance (soil organic carbon), pollination	pollination (contribution to yield)	Not available	Not available	soil nutrients
	Regulating services	carbon storage (LPJ model), drought and flood prevention, water quality	flood mitigation, carbon sequestration, erosion control, water quality	carbon sequestration and carbon storage	erosion control, (flood mitigation, water quality)	water quality
	Cultural services	recreation, sense of place, beauty	recreation and tourism, cultural and aethetic values, real estate prices as indicator of valuation of nature	Not available	Not available	land prices based on surroundings
biodiversity	Species diversity	statistical niche modelling	species richness (feeding and breeding habitat regquirements of 37 terrestrial vertebrate species, dispersal ability)	mammal, bird, reptile, and amphibian species distribution	Not available	Not available

Model name	ATEAM	InVEST	Naidoo et al.	Swallow et al.	Costanza et al.
Genetic	Not available	Not available	Not available	Not available	Not available
diversity					
Ecosystem	Not available	Not available	Not available	Not available	Not available
diversity					

1.3 Usability of selected models for TEEB

1.3.1 Integrated assessment models

Model name	AIM	GUMBO	IFs	IGSM	IIASA Integrated Assessment Modeling Framework	IMAGE	MIMES
International acknowledgeme nt	Has been used in many assessments (IPCC, GEO), widely accepted (esp. in Asia), little scientific	One peer- reviewed article, widely cited, large number of collaborators	widely accepted, broad range of users, many assessments	widely accepted, many publications	Widely accepted, used in IIASA assessments	widely accepted, publications: 2 books, > 100 papers, used in MA, IPCC, OECD outlook, GEO, GBO	not published yet, large number of collaborators, high level of publicity, including
	literature.						politics (see website)
width of spectrum of drivers	broad range of socio-economic drivers	Key drivers are human population development and investment	broad range of socio-economic drivers, including socio- political	broad range of socio-economic drivers	broad range of socio-economic drivers	broad range of socio-economic drivers	Key drivers are human population development and investment
width of spectrum of goods and services covered	Provisioning (water, timber, food), and regulating (climate regulation, air quality, human health, flood damage)	The dynamics of eleven major ecosystem goods and services for each of the biomes are simulated and evaluated: provisioning,	Only provisioning services including fisheries, carbon emissions, water use, human health	agriculture, climate regulation , air quality, human health, sea level	provisioning, climate regualation	provisioning (crop + livestock production), regulating (carbon) supporting (nitrogen cycling)	very large, all areas covered

Model name	AIM	GUMBO	IFs	IGSM	IIASA Integrated	IMAGE	MIMES
					Assessment		
					Modeling		
		-			Framework		
		supporting,					
		regulating,					
		biodiversity.					
richness of detail	high	high number of	High, six	High amount of	high	high	very high: large
including		parameters and	economic	sectoral detail,			number of
sectoral detail		variables in the	sectors:	especially in the			variables and
		socio-economic	(agriculture,	energy sector			parameters
		biophysical sub-	energy	(unrees)			
		models	industry.	agriculture.			
		(economic sectors	services, and	transport, plus			
		are aggregated	information/co	biogeochemical			
		into one, diverse	mmunications	modelling			
		energy resources,	technology or				
		simple food	ICT), eduction,				
		demand and land	nealt, socio-				
Possibility of	5° by 5°	Not spatially	Not spatially	0.5° by 0.5°	5' by 5'	0.5° by 0.5°	The MIMES at
upscaling/	resolution,	explicit, 11 biome	explicit, not	resolution,	resolution,	resolution,	this stage
downscaling	application on	types	below country-	application on	application on	application on	represented a
	scale close to		level	scale close to this	scale close to	scale close to this	general model
	this or lower			or lower does not	this or lower	or lower does not	scalable in time
	does not provide			provide useful	does not provide	provide useful	and space to be
	userul results			results	userul results	results	applied in
							and local
							models
effects of	Yes	Not known	Yes- Model is	Yes	Yes	Yes – several	Not known
European			focussed on			studies already on	

Model name	AIM	GUMBO	IFs	IGSM	IIASA Integrated Assessment Modeling Framework	IMAGE	MIMES
policies on global level?			estimating direct and indirect effects of different policies, interactions between different policies.			effects of national and multinational policies	
operational access for TEEB	Model not available online	The model can be downloaded and run on the average PC to allow users to explore for themselves the complex dynamics of the system and the full range of policy assumptions and scenarios. Commercial and consultancy uses have to be coordinated with developers/Unive rsity of Vermont.	Model is available online: www.ifs.du.edu	Model not available online	Models not available online	model not available, requires a well- trained multidisciplinary team	Model is available for download: http://www.uvm edu/giee/mimes 2/downloads.ht ml
known plans for	Improvement of	calculate the	Enhancement	Improvements on	Various	by 2010 the	The different

Model name	AIM	GUMBO	IFs	IGSM	IIASA	IMAGE	MIMES
					Integrated		
					Assessment		
					Modeling		
					Framework		
maintenance	carbon cycle	'shadow prices'	aiming at better	the resolution of	activities are	incorporation of a	submodels for
and	module;	of ecological	scenario-testing	the climate	ongoing related	biophysical water	the ecosystem
development	estimate the	resources based	and policy	submodel	to bio-energy	and vegetation	services are
_	impacts of	on 'optimal'	analysis		production,	module (LPJ) is	constantly
	climate change	(rather than			REDD-related	planned	improved by the
	on water	'actual') levels of			carbon trade		users, including
	resources, flood	resource use.			options, analysis		marine
	risks, forests,				of organic and		
	agriculture,				precision		
	coastal zones,				farming and		
	human health				natural hazard		
	(vector-born				mitigation		
	diseases)				strategies		
	(especially in						
	Asia); further						
	developments						
	concern water						
	demand and						
	trade modelling						
	and a detailed						
	crop production						
	model with						
	fertilizer and						
	pesticide loads						
	and N ₂ O						
	emissions; fruit						
	production						

Model name	PoleStar	Treshold 21	GTAP	ENV-Linkages	IMPACT-WATER	CLUE
International	Widely accepted,	Used for national	widely accepted,	Specially developed for	widely used	widely used, many
acknowledgement	used in GEO	application mainly	many publications,	assessments, used by		peer-reviewed
	assessment		used in several	World bank		publications
			assessments			
width of spectrum of	high: socio-	broad range of	range of economic	broad range of socio-	broad range of	covers a wide range
drivers	economic as well as	socio-economic	drivers	economic drivers	socio-economic	of biophysical and
	environmental,	drivers			arivers	numan drivers at
	users may define					and anotial cooles
width of spootnum of	Provisioning	Provisioning	Provisioning	Provisioning services	Provisioning	none
goods and services	services (water raw	services	services	(crops livestock timber)	services (crops	none
covered	materials	(agriculture)	(agriculture)	(erops, nvestoek timber)	livestock water)	
	agriculture)	(uBrieditare)	(ugriculture)		ni estoen, (later)	
richness of detail	high, data can be	high	high	26 economic sectors	IMPACT covers 32	limited consideration
including sectoral detail	disaggregated into	C	C	considered, different types	commodities,	of economic
_	regions, subsectors			of agriculture (intensive,	including all	variables
	and processes			extensive)	cereals, soybeans,	
					roots and tubers,	
					meats, milk, eggs,	
					oils, meals,	
					vegetables, fruits,	
					sugar and	
					in a partial	
					ni a partiai	
					framework It is	
					specified as a set of	
					country-level supply	
					and demand	
					equations where	
					each country model	
					is linked to the rest	

1.3.2 Economic models, scenario building tools and others

Model name	PoleStar	Treshold 21	GTAP	ENV-Linkages	IMPACT-WATER	CLUE
					of the world through	
					trade.	
Possibility of	applicable at	National and	Global or country	Global or country level	281 spatial units	CLUE an be scaled
upscaling/downscaling	national, regional	global level only	level	-	-	up or down, CLUE-S
	and global scales;					for regional
	own data sources					modelling purposes
	can be incorporated					01 1
	into basic model					
	structure					
effects of European	Via drivers, can be	Via drivers, can be	ves, diverse policy	ves, diverse policy options	ves, diverse policy	ves
policies on global level?	specified explicitly	specified explicitly	options	5	options	5
operational access for	easy to use software	PC-based user-	GTAP6 2a can be	Model not available online	Ease-of-use is very	Full version with
TEEB	tool for	friendly tool open	downloaded at:		limited (i.e.	technical support of
	sustainability	source library for	https://www.gtap.ag		referring to the full	the model is only
	studies. both	download, requires	econ purdue edu/mo		version of	available for
	scenario-building	active role of user	dels/current.asp		IMPACT). IFPRI	collaborative
	tool and database of	in the definition of	······································		has developed a	projects. Others may
	current indicators.	the model			distributional	use the model signing
	flexible and user-	structure			version (IMPACT-	a memorandum of
	friendly framework				D) that can be	understanding
	for building and				downloaded free of	excluding the
	assessing				charge	commercial use of
	alternative				(www.IFPRI.org/th	the model and
	development				emes/impact/impact	requirement of proper
	scenarios user				d asp)	referencing
	manual				and P).	
	(http://www.seib.or					
	g/polestar)					
known plans for	unknown	unknown	There is a project to	Carbon sequestration and	Ongoing	Future developments
maintenance and			extend the GTAP	storage will be included, as	developments aim	of the model include
development			Model for the	well as greenhouse gas	at integrating	a crop
·····			analysis of poverty	emissions due to changes	various models of	(management)-
			issues, inclusion of	in land use. The energy	food supply and	specific approach and
			bio-fuel as energy	sector is going to be	demand at the	the application of

Model name	PoleStar	Treshold 21	GTAP	ENV-Linkages	IMPACT-WATER	CLUE
			source (production,	disaggregated into nuclear,	macro- and micro-	spatially specific
			consumption and	fossil fuel, hydro-energy	level, both from the	attainable yields.
			trade)	and various renewable	socio-economic as	Other planned
				energy sources.	well as the	developments are the
					biophysical	modelling of
					modelling side.	biophysical landscape
					Interaction between	processes, further
					both components	implementation of
					will be	socio-economic
					incorporated.	processes, and the
					Interfaces with	use of remote sensing
					national and global	images.
					level general	
					equilibrium models	
					are developed.	

1.3.3 Biogeochemical models

Model name	IBIS	Agro-IBIS	CENTURY	LPJmL	PICUS	SAVANNA
International	widely used, many	widely used, many	widely used,	widely used, many	several peer-reviewed	widely used, many peer-
acknowledgement	peer-reviewed	peer-reviewed	many peer-	peer-reviewed	publications	reviewed publications
	publications	publications	reviewed	publications		
			publications			
width of spectrum	environmental	environmental	environmental	environmental drivers	climate and human	Climate, disturbance and
of drivers	drivers	drivers and land use	drivers and land	and land use	management (flexible	human management
			use		at individual tree	
					level)	
width of spectrum	water, plant	water, plant	water, plant	Water balance, plant	good coverage of all	plant production, animal
of goods and	production, carbon	production, carbon	production,	production, carbon	forest-related services:	production, water supply
services covered	flux, N balance	flux, N balance	carbon flux	flux	timber production,	
					nutrient, water	
					cycling, carbon	

Model name	IBIS	Agro-IBIS	CENTURY	LPJmL	PICUS	SAVANNA
					sequestration	
richness of detail including sectoral detail	no economics, detailed biogeochemical model	no economics, detailed but biogeochemical model	no economics, detailed biogeochemical model	no economics, detailed biogeochemical model	limited to forestry sector, detailed biological processes	plant and animal dynamics are modelled based on nutrient supply
Possibility of upscaling/ downscaling	unknown	Precision agricultural version PALMS for 5m ²	Not applicable: not spatially explicit	GUESS for regional modeling	Upscaling possible	Scale-independent (dependent on input), limited number of grid- cells
effects of European policies on global level?	No policy options	No policy options (via land use maps only)	No policy options, but possible via different land management practices	No policy options, only via land use change	Not specified, but possible via forest management	Yes, via land management options, economics
operational access for TEEB	can be downloaded but not modified, http://www.sage.wi sc.edu/download/IB IS/ibis.html	model and input files can be downloaded, but no help is provided, listserve and user discussions exist, http://daac.ornl.gov/ MODELS/guides/I BIS_Guide.html	Century 5 is a research version of the model, it can be obtained upon request, Century 4 is freely available at: http://www.nrel.c olostate.edu/proje cts/century/	open and unrestricted access, LPJ can be downloaded (upon request) at http://www.pik- potsdam.de/research/c ooperations/lpjweb/lpj -lpjml-versions	can be acquired from the authors	available at http://www.nrel.colostate .edu/ftp/coughenour/pubs _lock/index.php?Director y=Manual_1993
known plans for maintenance and development	unknown	Smaller scale resolution, more detailed management	Develop a spatially explicit version, improve model details	Inclusion of forestry, furthermore LPJmL is linked with MAgPIE (land use model) and REMIND (macro- economic model) to model food production, land use	unknown	unknown

Model name	IBIS	Agro-IBIS	CENTURY	LPJmL	PICUS	SAVANNA
				change and water		
				constraints.		

1.3.4 Hydrological models

Model name	WaterGAP	(E-) SWAT	WBM	
International	high, several peer reviewed	widely used, many peer-reviewed	widely used, many peer-reviewed	
acknowledgement	publications, used in many global and	publications	publications	
	national assessments			
width of spectrum of	WaterGAP simulates the impact of	environmental drivers only	environmental drivers	
drivers	demographic, socioeconomic and			
	technological change on water use as			
	well as the impact of climate change			
	and variability on water availability			
	and irrigation water use			
width of spectrum of	focussed on water (quantity)	water-related	water-related, livestock production	
goods and services				
covered				
richness of detail	high, the only comprehensive global	no economics, detailed biophysical model	no economics, detailed biophysical model	
including sectoral detail	water use model which computes			
	sectoral water uses in grid cells			
Possibility of	Basic level is river basin, so it is	Large amount of data necessary for	0.5° by 0.5° resolution, can not be used for	
upscaling/downscaling	rather-small-scaled and results can be	calibration, high detail of land	smaller scales	
	integrated to global-level. It is not	use/management		
	advisable to use model results for			
	developing a water management plan			
	for a particular river basin. But			
	different basins can be compared.			
effects of European	Via socio-economic drivers or climate	Via climate input or land use input	Via socio-economic drivers or climate input	
policies on global level?	input			
operational access for	Not available	SWAT can be downloaded at:	Detailed descirption available at	
TEEB		http://www.brc.tamus.edu/swat/	http://www.asb.cgiar.org/BNPP/phase2/ifpri/	
			description water balance model 10jul2003.	

Model name		WaterGAP	(E-) SWAT	WBM
				doc
known plans	for	water quality module is currently under	unknown	unknown
maintenance	and	development; for WaterGAP3:		
development		increase of spatial resolution		

1.3.5 Biodiversity models

Model name	GLOBIO	MIRABEL	Biodiversity	SAR species area	GARP	EUROMOVE
			intactness index	relationship		
International	recently	one publication	several peer-	widely accepted,	application still	two peer-reviewed
acknowledgement	published, used in		reviewed	many peer-	discussed in scientific	publications, widely
C	global		publications	reviewed	literature	cited
	assessments		1	publications.		
				widely cited used		
				for MA		
width of spectrum of	land use	land use	land use	climate change	climate change	climate only driver via
drivers	nollution	nollution		enninge enninge	erinate eriange	IMAGE policy options
unvers	infrastructure and	ponution				on climate can be used
	fragmentation					as impact no effects of
	nagmentation,					as impact, no effects of
	other drivers via					land use
	IMAGE					
width of spectrum of	biodiversity only	biodiversity only	biodiversity only	biodiversity only	biodiversity only	biodiversity only
goods and services						
covered						
richness of detail	limited	limited	limited	limited	limited	limited
including sectoral detail						
Possibility of	Can be applied to	Can be applied to	The Biodiversity	scale-independent	Scale-independent	presence data for large
upscaling/downscaling	smaller areas	smaller areas	Intactness Index	-	-	number of species
			(BII) can be			needed as input
			applied at scales			r
			at least down to			
			500 km^2 (<i>i.e.</i> to			
			the level of local			
			the level of local			

Model name	GLOBIO	MIRABEL	Biodiversity	SAR species area	GARP	EUROMOVE
			intactness index	relationship		
			government)			
			while retaining its			
			intuitive meaning.			
effects of European	yes, via IMAGE	Via drivers	Via land use input	Via land use input	Via climate change	yes, via effects on
policies on global level?		(pollution, land			inputs	global climate change
		use)				(IMAGE) (Europe
						only)
operational access for	not available	Not available	Methodology	Methodology	methodology is available	Model not available
TEEB			described in	described in	online:	online.
			Scholes & Biggs,	Pimm et al., 1995	www.lifemapper.org/des	
			2004		ktopgarp	
known plans for	Improvement of	No further	unknown	unknown	unknown	Unknown!?!/none
maintenance and	infrastructure	development				
development	module,					
-	refinement and					
	inclusion of other					
	pressures					

1.3.6 Ocean models I

Model name	ASSETS	Atlantis	Aus- Connie	Cumulative Threat	EwE, EcoSpace &	GEEM
				Model for the global	EcoOcean	
				ocean		
International	International	Methodology has	Methodology has	Published paper has been	The software has more	Methodology has been
acknowledgeme	collaborations are	been accepted	been accepted	widely cited and used by	than 2000 registered users	accepted through the
nt	being/have been	through the peer-	through the peer-	many organisations	representing 120	peer-review process and
	forged in: 13 North	review process. The	review process.	including UNEP-WCMC.	countries, more than a	has since been applied
	and Mid-Atlantic	model has been			hundred ecosystem	and built upon by the
	systems through a	applied to upwards			models applying the	scientific community.
	partnership with the	of 15 ecosystems and			software have been	
	UMD, UNH, UMASS,	the UN Food and			published, see	
	Maine State Planning	Agriculture			www.ecopath.org. The	

Model name	ASSETS	Atlantis	Aus- Connie	Cumulative Threat	EwE, EcoSpace &	GEEM
				Model for the global	EcoOcean	
				ocean		
	Office, and EPA	Organisation (FAO)			approach is thoroughly	
	(funding through	has rated the model			documented in the	
	CICEET):	'best in the world'			scientific literature.	
	NEEA/ASSETS has	o cot in the world.				
	been applied to 10					
	estuarine and coastal					
	systems in the					
	European Union:					
	ASSETS scores have					
	been developed for					
	systems from the US,					
	EU, and China;					
	Possible harmonization					
	is being investigated					
	between OSPAR-					
	COMPP and ASSETS					
	(COMPASS					
	Initiative); A joint US-					
	EU-China Initiative is					
	being prepared.					
width of	Good - ASSETS takes	Excellent - takes into	Limited - Aus-	Good - 17 different	Good - The models take	Limited - GEEM takes
spectrum of	into account human	account chemical,	ConnIe takes into	drivers are used that fall	into account biological	into account energy
drivers	pressures and	biological, ecological	account only those	into categories such as	information from stock	(biomass) transfer
	biological parameters.	and physical data as	drivers based on	demersal and pelagic	assessment data,	between trophic levels in
		well as	ocean circulation and	fisheries, climate change,	including time series	the food web and how
		socioeconomic data	connectivity.	pollution, and invasive	data. They build in	these can be altered
		in the form of		species.	dynamic population data	through human impacts.
		fisheries fleet			linking to the ecosystem	
		statistics.			level, management	
					regimes such as MPAs	
					can be incorporated in	
					Ecospace, and economic	

Model name	ASSETS	Atlantis	Aus- Connie	Cumulative Threat	EwE, EcoSpace &	GEEM
				Model for the global	EcoOcean	
				ocean		
					and fisheries data for	
					resource valuation are	
					considered through	
	~				EcoOcean.	
width of	Provisioning (estuarine	Provisioning	Provisioning (larval	All types of goods and	Provisioning (fisheries	Provisioning (fisheries);
spectrum of	fisheries/aquaculture),	(Fisheries (inc. their	recruitment for	services provided by the	and their effects on	Regulating (biomass and
goods and	Regulating (Water	ecosystem effects);	fisheries); Regulating	marine environment can	ecosystems); Supporting	fluxes); and Supporting
services covered	quality), Supporting	Supporting	(ecossytem	be related to this model.	(population dynamics);	(Population dynamics
	(Nutrient cycling,	(Population	connectivity (inc.		Cultural and Spiritual	(trophic controls);
	Primary Production),	dynamics (Trophic	Genetic and Nutrient		(valuation of ecosystem	biological maintenance of
	Cultural and Spiritual	controls); changes to	flows); Larval		resources).	resilience; changes to
	(Recreation).	ecosystem	dispersal and			ecosystem community
		community structure	recruitment);			structure may impact on
		may impact on other	Supporting (nument			other ecosystem services).
		Ecosystem services;	cycling).			
		(biomass and nutriant				
		(bioinass and numeric				
		Cultural (Economic				
		valuation of				
		resources)				
richness of	Not applicable	Good level of	Limited detail - a	Although not described in	Although a suite of	Limited detail - some
detail including	1 tot uppriouoro	ecosystem detail	number of	depth this model is	ecosystem models the	applications are described
sectoral detail		Sectoral aspect is	applications are	applicable multiple	models are most	briefly which include the
sectoral actual		currently limited to	mentioned but not	sectors and it provides a	applicable to commercial	agricultural and
		fisheries	discussed.	framework that can be	fisheries whereas other	fishing/hunting sectors
		applications.		developed and adapted for	sectors have only limited	
		11		use by other sectors. e.g.	detail.	
				by adding biodiversity		
				information.		
Possibility of	Applicable to any scale	An advantage of the	Aus-ConnIe is for use	A global model which can	The models are	GEEM is applicable at
upscaling/downs	of estuary.	Atlantis modelling	in the Australian	be applied at the local-	applicable at multiple	multiple, ecosystem

Model name	ASSETS	Atlantis	Aus- Connie	Cumulative Threat	EwE, EcoSpace &	GEEM
				Model for the global	EcoOcean	
				ocean		
caling		approach is that it	region. Due to its	and regional-scale	scales.	scales as it is based on
		can easily be	fairly coarse			food webs.
		modified to nest fine-	resolution it is			
		scale models within a	advised not to be			
		coarser coast-wide	used at too fine a			
		model.	scale.			
effects of	Categories are colour-	Unknown.	Not applicable.	Unknown.	Application to FAO	Application to FAO
European	coded following the				fisheries policies.	fisheries policies.
policies on	convention of the EU				-	-
global level?	Water Framework					
0	Directive					
	(2000/60/EC), and					
	aims to contribute to					
	the classification					
	systems which are a					
	requirement of the					
	E.U. Water					
	Framework Directive,					
	providing a scale for					
	setting eutrophication					
	related reference					
	conditions for different					
	types of transitional					
	waters.					
operational	ASSETS application is	Model descriptions	Aus-Connie is freely	All data sets and the	Model descriptions are	Modelling process is
access for TEEB	available for download	are available in peer-	available through the	model are freely available	available in peer-	complex and would need
	at:	reviewed published	website at:	to download online at:	reviewed published	to be carried out by a
	http://www.eutro.org/r	papers that can be	http://www.per.marin	http://www.nceas.ucsb.ed	papers that can be	specialist. However, all
	egister/. It is free and	accessed online.	e.csiro.au/aus-	u/GlobalMarine	accessed online. EwE is	methods and results are
	is available in four	Technical documents	connie/interface.		freely available for use	fully and transparently
	languages including	are less easily	Model is available		and downloadable from	published and discussed
	Chinese.	available and the	through either an		www.ecopath.org	in the scientific literature.

Model name	ASSETS	Atlantis	Aus- Connie	Cumulative Threat	EwE, EcoSpace &	GEEM
				Model for the global	EcoOcean	
				ocean		
		model is not freely	anonymous log-in			The model cannot be
		available for use.	with restricted access			downloaded.
		Contact Beth Fulton	or through a			
		at	registered users			
		Beth.Fulton@csiro.a	portal.			
		u for more				
		information.				
known plans for	NEEA/ASSETS	Not specified.	Not specified,	Next key research step	Facilities are currently	Not specified.
maintenance	Update Program is in	Developments may	although the website	will be to compile	being implemented in	
and	operation. Type	vary depending on	does have a feedback	regional and global	EwE6 for using spatial	
development	specific indicator	the study area to	form for the website	databases of empirical	drivers and reference	
	variables and	which the model is	itself and the model	measurements of	data, e.g. Primary	
	thresholds are being	applied.	which indicates	ecosystem condition to	production, Salinity,	
	considered to improve		future development	further validate the	Temperature, Nutrients,	
	the accuracy and		will take place.	efficiency of the	Advection, Fish	
	management			approach.	distributions, and Survey	
	implications of the				data. EcoOcean is	
	model.				planned to be developed	
					to a 0.5km grid cell	
					resolution. The Depletion	
					Index provided by	
					EcoOcean is also being	
					developed to represent a	
					marine equivalent of the	
					MSA used in the	
					GLOBIO project.	

1.3.7 Ocean models II

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Change on Global				
	Biodiversity				
International	Model recently	RamCo has been applied	The Reefs at Risk series	The ERSEM II	Methodology has been
acknowledgement	(2008/2009) published	to the south-west Sulu-	created high impact in the	methodologies and	accepted through the peer-
	in peer-reviewed	Sulawesi region and this	global media and are	applications were published	review process.
	journals by an	methodology has been	considered high profile	in a special edition of the	
	internationally	published in two peer-	documents internationally.	Journal of Sea Research - an	
	recognised team of	reviewed scientific	The methodology has been	internationally renowned,	
	scientists and has	papers.	applied internationally to	peer-reviewed publication.	
	recieved wide media		help inform decision	The fact that ERSEM was	
	interest.		making regarding the	an EU funded project also	
			management of coral reefs.	emphasises the international	
				buy-in of the product.	
width of spectrum	Good - Takes into	Excellent - Integrated	Good - takes into account	Good - takes into account	Limited - Icthyop takes into
of drivers	account 1066	model taking into	four component indicators	both biological data on the	account biological propoerties
	commercial fish	account socioeconomic	(Coastal development;	lower trophic levels of	of icthyoplankton and the key
	species and includes	data as well as	Marine Pollution;	pelagic and benthic systems	physical variable that influence
	habitat preferences,	environmental and	Overexploitation and	and the physical parameters	their dynamics.
	dynamic population	physical components.	destructive fishing; Inland	that are affected by these	
	measures, climate		pollution and erosion).	communities, e.g. Carbon	
	scenarios, and		However the model does	and nutrient dynamics of	
	oceanographic		not take into account	Microzooplankton. The data	
	variables.		future threats of climate	in this model can then be	
			change or population	linked to physical models	
			growth, nor does it	thus increasing the range of	
			consider threats resulting	drivers.	
			from coral disease,		
			bleaching, and other		
			factors considered largely		
			natural in origin.		
width of spectrum	Provisioning	All types of goods and	All types of goods and	Provisioning (fisheries	Provisioning (larval
of goods and	(commercial and	services provided by the	services provided by coral	through bottom up controls	recruitment for fisheries);
services covered	artisanal); Supporting	coastal zone can be	reefs can be related to this	of fisheries populations;	Regulating (ecosystem
	(changes to ecosystem	related to this model.	model.	impacts of fisheries);	connectivity; Larval dispersal

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ІСТНУОР
	Change on Global				
	Biodiversity				
	community structure);			Regulating (ecological	and recruitment); Supporting
	and Cultural and			fluxes; nutrient limitations);	(bottom-up support of food
	Spiritual (impacts on			Supporting (Lower trophic	webs).
	artisanal fishing			level habitat modelling for	
	practices.			pelagic and benthic	
				systems).	
richness of detail	Limited detail - main	Good richness of detail	Good richness of detail of	Limited detail - a number	Not applicable
including sectoral	application described	regarding the economic	data used in technical	of previous applications to	
detail	is to fisheries and only	impacts on coastal	notes, a number of sectors	sectors are briefly described,	
	commercial fish	systems. This is based	are considered in the	however the majority of	
	species are used in the	primarily around	model including fisheries,	information is provided	
	model.	agriculture and direct use	fuel, transport, and	through the ecosystem	
		of resources, however	tourism.	modelling of regional	
		also considers the		examples.	
		tourism and transport			
		sectors.			
Possibility of	The global model can	RamCo is the first	The Reefs at Risk model is	Several studies have shown	Though it has been historically
upscaling/downscal	be downscaled to	prototype of an	relevant, and has been	that the model is equally	developed to study the
ing	regional and local	information system,	applied at, global, regional	applicable in warm	dynamics of small pelagic fish
	scales with the aim of	which is to evolve	and national scales.	temperate (e.g.	ichthyoplankton in upwelling
	improving	eventually into a Generic		Mediterranean) systems and	systems, Ichthyop is a generic
	understanding of	Decision Support System		tropical situations (such as	tool in the sense that it
	potential climate	for the Integrated		the Arabian Sea). The	incorporates the most
	change impactsat finer	Assessment of		versatility of ERSEM is	important processes involved
	spatial and temporal	Sustainable Coastal Zone		demonstrated by the range	in ichthyoplankton dynamics.
	scales. The next step	Management problems.		of subjects to which it has	Using Ichthyop for other
	would be to obtain	The ultimate aim is to		been applied. Studies of	species in other systems may
	physical and	develop a system that		land-ocean interaction have	imply a few changes in the
	biological data in finer	will be applicable for the		ranged from shallow coastal	source code (e.g., changing the
	resolution for regional	purpose of (1) rapid		lagoons to an assessment of	growth function, implementing
	scale studies,	assessment, to (2) a wide		riverine influence on the	a specific larval vertical
	particularly in climate	range of coastal zone		North Sea basin. Basin scale	migration scheme, etc.).

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ІСТНУОР
	Change on Global				
	Biodiversity				
	sensitive areas.	in (3) most of the coastal		and open ocean applications	
		zones of the world		have addressed issues	
		zones of the work.		varying from the dynamics	
				of viruses to the influence of	
				weather and climate on	
				marine trophodynamics.	
				ERSEM also provides a	
				model mesocosm	
				environment that can be	
				expected to react in a	
				qualitatively correct manner	
				inter-annual variations	
effects of European	Unknown	Not applicable	Unknown	Unknown	Unknown
policies on global	Clikilo Wil.	Not applicable.	Children in		Children
level?					
operational access	Model descriptions are	Demos of the model and	Details of the model and	Details of the model and	The software is freely available
for TEEB	available in peer-	the user's guide are	methodology are available	methodology are available	for download and a user
	reviewed published	available through the	in the Reefs at Risk	through the ERSEM PML	manual is available at
	papers that can be	RIKS website	publications available	website	http://www.ur097.ird.fr/project
	accessed online. The	(http://www.riks.nl/proje	CDROMG containing all	(http://web.pml.ac.uk/ecom	s/ictnyop/. Output files are in
	for use however Sea	software development	the GIS data and models	model is not available for	processed easily. This code is
	Around Us have an	with the tools provided in	used in the analysis are	download and some of the	organized simply commented
	excellent collaborative	the RAMCO package nor	available upon request.	website is still under	and documented, which should
	history, making	the application of the	Contact Lauretta Burke for	development therefore there	make it easy to modify by a
	products available	RAMCO package to a	more information:	is instruction to contact	user with basic programming
	from their models for	case study is permitted.	lauretta@wri.org .	modelling@pml.ac.uk for	skills.
	use by other	Software or application		more information.	
	organisations.	development and further			
		usage or marketing of the			

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Change on Global				
	Biodiversity				
		RAMCO package will			
		only be accepted			
		following the purchase of			
		a full version of the			
		package.			
known plans for	Plans are in place to:	Building of the MBB	WRI and ICRAN are	Ongoing work is	Not specified
maintenance and	include the effects of	building blocks into	leading a update of the	investigating data	
development	salinity on species	MBB-libraries, adding to	1998 analysis (Reefs at	assimilation as a technique	
	distribution in the	and developing these as	Risk + 10), which will	for producing robust	
	model; to incorporate	necessary; development	provide a detailed	forecasts of ecosystem	
	coastal upwelling as a	of scenarios, policy	examination of human	response to short term	
	factor to determine	options and policy	pressures on coral reefs,	climatic influences.	
	present and future	impacts through input	implication for reef		
	distributions of marine	from policy makers;	condition, and projections		
	species; to predict	analysts will further	of associated economic		
	global maps of kelp	develop and refine the	impacts in coastal		
	forests and simulate	model through	communities. WRI and		
	how climate change	calibration and	ICRAN, in collaboration		
	may affect the	parameterisation based	with a number of other		
	distribution of kelp	on knowledge of coastal	partners, aim to raise		
	forests and their	zone processes. Through	public awareness to the		
	associated fauna; to	this process, RAMCO	location and severity of		
	use the model to	could evolve into a	threats to coral reefs, and		
	investigate climate-	storage tank of coastal	catalyse targeted,		
	induced changes in	management knowledge,	responsible, and informed		
	physiology and	from this specfic	decisions that protect coral		
	population dynamics;	Libraries could be	reefs and the broad range		
	to account for the	developed which will	of benefits they provide		
	affects of ocean	group the MBBs required	for people.		
	chemistry.	for specific coasts.			

1.3.8 Regional models/assessments

Model name	ATEAM	InVEST	Naidoo et al., 2008	Swallow et al., 2009	Costanza et al. 2002
International	several peer-	recent project, first	peer-reviewed article	peer-reviewed article	peer-reviewed article,
acknowledgement	reviewed articles,	publications	recently published	recently published	widely cited
	widely cited				
width of spectrum of	policy scenarios,	only land use change based	species conservation	only land use change	land use effects on
drivers	climate change,	on scenarios (others will be	strategies		ecosystem services
	socio-economic	incorporated)			(linked ecological
	development			D	economic model)
width of spectrum of	provisioning	all areas of services covered:	provisioning (livestock,	Provisioning (food and	Provisioning (water),
goods and services	(agriculture,	provisioning (food, timer,	water), regulating (carbon	water), regulating	supporting (soil
covered	forestry, water),	non-timer forest products,	storage and sequestration),	(water quality, erosion	nutrients, NPP),
	regulating (water,	(water supply), regulating	biodiversity	control)	regulating (water
	carbon),	(water, erosion, carbon			(house prices)
	fertility	(pollination), supporting			(nouse prices)
	pollination)	(recreation) and biodiversity			
	cultural	(recreation) and broatversity			
	(recreation).				
	biodiversity				
richness of detail	limited, detailed	limited	no economics, only	Detailed water model	Combined ecological
including sectoral detail	biogechemical		ecosystem processes	(SWAT), and	and economic
	models			agicultural production	modelling
Possibility of		possible, input: land cover	used on global scale as well		Resolution variable
upscaling/downscaling		maps; model has both a	as regional (California		
		simple and a complex (more	ecoregion)		
		data needed) version			
effects of European	Yes (European	if speficied within scenarios	Not applicable (mapping, no	Not applicable	Not applicable
policies on global level?	level only)		modelling)		
operational access for	yes	model is available at:	no	no	No
TEEB		http://www.naturalcapitalpro			
	TT 1 /	ject.org/InVEST.html			
known plans for	Unknown/none	Ongoing development on the	unknown	unknown	unknown
maintenance and		different submodels (fiers 1			

Model name	ATEAM	InVEST	Naidoo et al., 2008	Swallow et al., 2009	Costanza et al. 2002
development		to 3)			

1.4 Description of selected scenarios

Scenario name	GSG: conventional worlds: market forces
Description	gradual convergence in incomes and culture toward dominant market
	model, market-driven globalization, trade liberalization, institutional
	modernization
Correspondence with other	SRES A1, OECD baseline, MA global orchestration, GEO markets
scenarios	first, WWV business as usual, WBSCD FROG!
Type of scenario	normative
Policies specified	none, economical development shapes future
Purpose	A central theme the scenarios the identification of policies, actions
	and human choices required for a transition to a more sustainable
	and equitable future. The diversity and continuity of the GSG offers
	a unique resource to researchers, decision-makers and the general
	public.
Authorizing environment	GSG- global scenario group: Convened in 1995 by the Stockholm
	Environment Institute, the Global Scenario Group is an independent,
	international, interdisciplinary body that has been developing
	integrated global and regional scenarios (Raskin et al. 1998, 2002;
	Gallopi'n et al. 1997). The GSG scenario narratives are quantified
	with the use of the PoleStar System, a transparent tool for
	synthesizing global data sets, organizing sectoral linkages, and
	introducing assumptions (Raskin et al. 1999). This work has been
	used by a number of international assessments. Rsults are aimed at a
	global citizens movement.
Stakeholders involved in the	no stakeholders involved
development	
Time horizon and resolution	1995-2050
Spatial coverage and	global
resolution	
Domains mainly considered	population development, economics, government, individual
	lifestyle, sustainability
Main actors	economy, markets
comments	The normative GSG scenarios stood at the basis for many other,
	explorative scenarios (SRES, MA, GEO 4).

Scenario name	GSG: Barbarization: breakdown				
Description	social and environmental problems overwhelm market and policy response, unbridled conflict, institutional disintegration, and economic collapse				
Correspondence with other scenarios	none				
Type of scenario	normative				
Policies specified	None, no stable political regime				
Purpose	A central theme the scenarios the identification of policies, actions and human choices required for a transition to a more sustainable and equitable future. The diversity and continuity of the GSG offers a unique resource to researchers, decision-makers and the general public				
Authorizing environment	GSG- global scenario group: Convened in 1995 by the Stockholm Environment Institute, the Global Scenario Group is an independent, international, interdisciplinary body that has been developing integrated global and regional scenarios (Raskin et al. 1998, 2002; Gallopi'n et al. 1997). The GSG scenario narratives are quantified with the use of the PoleStar System, a transparent tool for				

	synthesizing global data sets, organizing sectoral linkages, and introducing assumptions (Raskin et al. 1999). This work has been used by a number of international assessments. Rsults are aimed at a global citizens movement				
Stakeholders involved in the	no stakeholdere involved				
Stakeholders involved in the	no stakenoiders involved				
development					
Time horizon and resolution	1995-2050				
Spatial coverage and	global				
resolution	0				
Domains mainly considered	population development, economics, government, individual				
-	lifestyle, sustainability				
Main actors	economy, individuals				
comments					

Scenario name	GSG: great transitions: eco-communalism
Description	fundamental changes in values, lifestyles, and institutions, local
_	focus and a bio-regional perspective
Correspondence with other	SRES B2
scenarios	
Type of scenario	normative
Policies specified	retreat into localism
Purpose	A central theme the scenarios the identification of policies, actions
	and numan choices required for a transition to a more sustainable
	and equitable future. The diversity and continuity of the GSG offers
	a unique resource to researchers, decision-makers and the general
	public.
Authorizing environment	GSG- global scenario group: Convened in 1995 by the Stockholm
	Environment Institute, the Global Scenario Group is an independent,
	international, interdisciplinary body that has been developing
	integrated global and regional scenarios (Raskin et al. 1998, 2002;
	Gallopi'n et al. 1997). The GSG scenario narratives are quantified
	with the use of the PoleStar System, a transparent tool for
	synthesizing global data sets, organizing sectoral linkages, and
	introducing assumptions (Raskin et al. 1999). This work has been
	used by a number of international assessments. Rsults are aimed at a
	global citizens movement.
Stakeholders involved in the	no stakeholders involved
development	
Time horizon and resolution	1995-2050
Spatial coverage and	global
resolution	
Domains mainly considered	population development, economics, government, individual
-	lifestyle, sustainability
Main actors	lifestyle change, individuals
comments	

Scenario name	GSG: conventional worlds: policy reform
Description	gradual convergence in incomes and culture toward dominant market
	model, strong policy focus on meeting social and environmental
	sustainability goals
Correspondence with other	MA techno garden, GEO policy first, OECD policy variants, WWV
scenarios	technology, WBSCD GEOpolity,
Type of scenario	normative
Policies specified	strong policies towards sustainability, social equity and
	environmental protection
Purpose	A central theme the scenarios the identification of policies, actions
	and human choices required for a transition to a more sustainable
-------------------------------	--
	and equitable future. The diversity and continuity of the GSG offers
	a unique resource to researchers, decision-makers and the general
	public.
Authorizing environment	GSG- global scenario group: Convened in 1995 by the Stockholm
	Environment Institute, the Global Scenario Group is an independent,
	international, interdisciplinary body that has been developing
	integrated global and regional scenarios (Raskin et al. 1998, 2002;
	Gallopi'n et al. 1997). The GSG scenario narratives are quantified
	with the use of the PoleStar System a transparent tool for
	synthesizing global data sets organizing sectoral linkages and
	introducing assumptions (Raskin et al. 1999). This work has been
	used by a number of international assessments. Reults are aimed at a
	alobal citizens movement
Staliahaldang involved in the	giobal chizens movement.
Stakeholders involved in the	no stakenoluers involved
development	
Time horizon and resolution	1995-2050
Spatial coverage and	global
resolution	
Domains mainly considered	population development, economics, government, individual
	lifestyle, sustainability
Main actors	global policies
comments	· ·

Scenario name	GSG: Barbarization: fortress world
Description	social and environmental problems overwhelm market and policy
_	response, authoritarian rule with elites in "fortresses", poverty and
	repression outside
Correspondence with other	SRES A2, MA order from strength, GEO security first,
scenarios	
Type of scenario	normative
Policies specified	strong policies towards regional security, trade barriers
Purpose	A central theme the scenarios the identification of policies, actions
-	and human choices required for a transition to a more sustainable
	and equitable future. The diversity and continuity of the GSG offers
	a unique resource to researchers, decision-makers and the general
	public.
Authorizing environment	GSG- global scenario group: Convened in 1995 by the Stockholm
	Environment Institute, the Global Scenario Group is an independent,
	international, interdisciplinary body that has been developing
	integrated global and regional scenarios (Raskin et al. 1998, 2002;
	Gallopin et al. 1997). The GSG scenario narratives are quantified
	with the use of the PoleStar System, a transparent tool for
	synthesizing global data sets, organizing sectoral linkages, and
	introducing assumptions (Raskin et al. 1999). This work has been
	used by a number of international assessments. Rsults are aimed at a
	global citizens movement.
Stakeholders involved in the	no stakeholders involved
development	
Time horizon and resolution	1995-2050
Spatial coverage and	global
resolution	
Domains mainly considered	population development, economics, government, individual
	lifestyle, sustainability
Main actors	national policies, economy
comments	
Scenario name	GSG: great transitions: new sustainability

Scenario name	GSG: great transitions: new sustainability
---------------	--

D 1.11	
Description	fundamental changes in values, lifestyles, and institutions, new form
	of globalization that changes the character of industrial society
Correspondence with other	SRES B1, MA adapting mosaic, GEO sustainability first, WWV
scenarios	values and lifestyles, WBCSD Jazz
Type of scenario	normative
Policies specified	policies towards sustainability and equility
Purpose	A central theme the scenarios the identification of policies, actions
_	and human choices required for a transition to a more sustainable
	and equitable future. The diversity and continuity of the GSG offers
	a unique resource to researchers, decision-makers and the general
	public.
Authorizing environment	GSG- global scenario group: Convened in 1995 by the Stockholm
	Environment Institute the Global Scenario Group is an independent
	international interdisciplinary body that has been developing
	integrated global and regional scenarios (Raskin et al. 1998, 2002)
	Galloni'n et al 1997) The GSG scenario parratives are quantified
	with the use of the PoleStar System a transparent tool for
	surthasizing global data sata organizing sectoral linkages and
	introducing accumptions (Deckin et al. 1000). This work has been
	Introducing assumptions (Raskin et al. 1999). This work has been
	used by a number of international assessments. Rsuits are almed at a
	global citizens movement.
Stakeholders involved in the	no stakeholders involved
development	
Time horizon and resolution	1995-2050
Spatial coverage and	global
resolution	
Domains mainly considered	population development, economics, government, individual
	lifestyle, sustainability
Main actors	lifestyle change, individuals, governments
comments	

eak
FO
LO
gies,
to
1
that
ude

Scenario name	SRES A2
Description	moderate economic growth, intermediate technological development,

	self-reliance of regions
Correspondence with other	GSG fortress world, MA order from strength, GEO security first,
scenarios	
Type of scenario	explorative
Policies specified	trade barriers, strong national policies, no policies for greenhouse gas
	emissions
Purpose	climate change predictions, assessment of mitigation strategies,
	provide input for negotiations of possible measures/agreements
Authorizing environment	IPCC: 6 modelling groups for development from narrative to
	quantitative model inputs, however, there has been criticism that
	macro-economists were not involved in scenario development
Stakeholders involved in the	none, scientists only
development	
Time horizon and resolution	2100
Spatial coverage and	Global
resolution	
Domains mainly considered	trade, transport, manufacturing, agriculture, climate
Main actors	global policies
comments	SRES scenarios have been criticised for their negative attitude
	towards market-based solutions

Scenario name	SRES B1
Description	rapid technological change, central strong governments, restrictive
	policies, convergent world towards global solutions to economic,
	social and environmental sustainability, moderate economic growth
Correspondence with other	GSG new sustainability, MA adapting mosaic, GEO sustainability
scenarios	first, WWV values and lifestyles, WBCSD Jazz
Type of scenario	explorative
Policies specified	strong global management, no policies for greenhouse gas emissions
Purpose	climate change predictions, assessment of mitigation strategies,
	provide input for negotiations of possible measures/agreements
Authorizing environment	IPCC: 6 modelling groups for development from narrative to
	quantitative model inputs, however, there has been criticism that
	macro-economists were not involved in scenario development
Stakeholders involved in the	none, scientists only
development	
Time horizon and resolution	2100
Spatial coverage and	global
resolution	
Domains mainly considered	trade, transport, manufacturing, agriculture, climate
Main actors	local communities, "wellfare networks"
comments	SRES scenarios have been criticised for their negative attitude
	towards market-based solutions

Table 4: General information on scenarios

Scenario name	SRES B2
Description	technological change globally unevenly distributed, local solutions to
	economic, social and environmental sustainability, slow economic
	growth, decision-making on local/regional level, weak government
Correspondence with other	GSG eco-communalism
scenarios	
Type of scenario	explorative
Policies specified	trade barriers, local management, no policies for greenhouse gas
	emissions

Purpose	climate change predictions, assessment of mitigation strategies, provide input for negotiations of possible measures/agreements
Authorizing environment	IPCC: 6 modelling groups for development from narrative to quantitative model inputs, however, there has been criticism that macro-economists were not involved in scenario development
Stakeholders involved in the	none, scientists only
development	
Time horizon and resolution	2100
Spatial coverage and	global
resolution	
Domains mainly considered	trade, transport, manufacturing, agriculture, climate
Main actors	local communities
comments	SRES scenarios have been criticised for their negative attitude
	towards market-based solutions

Scenario name	MA: Global Orchestration
Description	global economic policies are the primary approach to sustainability
Correspondence with other	GSG market forces, SRES A1, OECD baseline, GEO markets first,
scenarios	WWV business as usual, WBSCD FROG!
Type of scenario	mostly explorative
Policies specified	global economic policies towards sustainability
Purpose	primary aim was to draw out the consequences of several plausible
	future worlds for ecosystem services, we needed to provide plausible
	explanations that considered social and economic drivers of change.
Authorizing environment	Scenario guidance teams
Stakeholders involved in the	The scenario guidance team conducted a series of interviews with
development	potential users of the scenarios to obtain their input for developing
	the goals and focus of the scenarios. This effort included directly
	asking various users what questions they wanted the MA to address.
	Users who responded included representatives from the Convention
	on Biological Diversity, the Convention to Combat Desertification,
	Ramsar, and other national government representatives; individuals
	from the private sector; and members of international
	nongovernmental organizations, civil society, and indigenous groups.
	This effort led to a greater understanding of what the active
	stakeholders hoped to gain from the MA scenarios. Final scenarios
	were developed with interviews of 59 leaders in NGOs,
	governments, and business from five continents.
Time horizon and resolution	2050, for some variables 2100
Spatial coverage and	global
resolution	
Domains mainly considered	focus on social policy, policy reforms focus on global trade and
	economic liberalization
Main actors	global policies, transnational companies, NGOs, multilateral
	organisations
comments	

Scenario name	MA: Order From Strength
Description	
Correspondence with other	GSG fortress world, SRES A2, GEO security first,
scenarios	
Type of scenario	mostly explorative
Policies specified	national policies for nature conservation (parks and reserves), trade
_	barriers
Purpose	primary aim was to draw out the consequences of several plausible

	future worlds for ecosystem services, we needed to provide plausible
	explanations that considered social and economic drivers of change.
Authorizing environment	Scenario guidance teams
Stakeholders involved in the	The scenario guidance team conducted a series of interviews with
development	potential users of the scenarios to obtain their input for developing
	the goals and focus of the scenarios. This effort included directly
	asking various users what questions they wanted the MA to address.
	Users who responded included representatives from the Convention
	on Biological Diversity, the Convention to Combat Desertification,
	Ramsar, and other national government representatives; individuals
	from the private sector; and members of international
	nongovernmental organizations, civil society, and indigenous groups.
	This effort led to a greater understanding of what the active
	stakeholders hoped to gain from the MA scenarios. Final scenarios
	were developed with interviews of 59 leaders in NGOs,
	governments, and business from five continents.
Time horizon and resolution	2050, for some variables 2100
Spatial coverage and	global
resolution	
Domains mainly considered	focus on self interest, regionalized and fragmented world, concerned
	with security and protection
Main actors	national policies, multinational companies
comments	

Scenario name	MA: Adapting Mosaic
Description	
Correspondence with other	GSG new sustainability, SRES B1, GEO sustainability first, WWV
scenarios	values and lifestyles, WBCSD Jazz
Type of scenario	mostly explorative
Policies specified	local policies
Purpose	primary aim was to draw out the consequences of several plausible
	future worlds for ecosystem services, we needed to provide plausible
	explanations that considered social and economic drivers of change.
Authorizing environment	Scenario guidance teams
Stakeholders involved in the	The scenario guidance team conducted a series of interviews with
development	potential users of the scenarios to obtain their input for developing
	the goals and focus of the scenarios. This effort included directly
	asking various users what questions they wanted the MA to address.
	Users who responded included representatives from the Convention
	on Biological Diversity, the Convention to Combat Desertification,
	Ramsar, and other national government representatives; individuals
	from the private sector; and members of international
	nongovernmental organizations, civil society, and indigenous groups.
	This effort led to a greater understanding of what the active
	stakeholders hoped to gain from the MA scenarios. Final scenarios
	were developed with interviews of 59 leaders in NGOs,
	governments, and business from five continents.
Time horizon and resolution	2050, for some variables 2100
Spatial coverage and	global
resolution	
Domains mainly considered	focus on active learning, political and economic activity, local
	management
Main actors	local management, cooperatives, global organisations
comments	

Scenario name	MA: TechnoGarden
Description	
Correspondence with other	GSG policy reform, GEO policy first, OECD policy variants, WWV
scenarios	technology, WBSCD GEOpolity,
Type of scenario	mostly explorative
Policies specified	proactive, global management
Purpose	primary aim was to draw out the consequences of several plausible
	future worlds for ecosystem services, we needed to provide plausible
	explanations that considered social and economic drivers of change.
Authorizing environment	Scenario guidance teams
Stakeholders involved in the	The scenario guidance team conducted a series of interviews with
development	potential users of the scenarios to obtain their input for developing
	the goals and focus of the scenarios. This effort included directly
	asking various users what questions they wanted the MA to address.
	Users who responded included representatives from the Convention
	on Biological Diversity, the Convention to Combat Desertification,
	Ramsar, and other national government representatives; individuals
	from the private sector; and members of international
	nongovernmental organizations, civil society, and indigenous groups.
	This effort led to a greater understanding of what the active
	stakeholders hoped to gain from the MA scenarios. Final scenarios
	were developed with interviews of 59 leaders in NGOs,
	governments, and business from five continents.
Time horizon and resolution	2050, for some variables 2100
Spatial coverage and	global
resolution	
Domains mainly considered	focus on environmental technology, multifunctional agriculture,
_	reduction of trade barriers and subsidies
Main actors	technological development, NGOs, professional associations
comments	Multi-functional aspects of agriculture and a global reduction of
	agricultural subsidies and trade barriers.

Scenario name	GEO4: Markets First
Description	Markets First pays lip service to sustainable development in terms of
	the ideals of the Brundtland Commission, Agenda 21 and other
	major policy decisions. There is a narrow focus on the sustainability
	of markets rather than in the context of the broader human-
	environment system
Correspondence with other	GSG market forces, SRES A1, OECD baseline, MA global
scenarios	orchestration, WWV business as usual, WBSCD FROG!
Type of scenario	explorative
Policies specified	open markets, environmental policies of national governments (air
	pollution), ideals of the Brundtland Commission, Agenda 21 and
	other major policy decisions
Purpose	UNEP GEO-4: Environment for Development shows how both
	current and possible future deterioration of the environment can limit
	people's development options and reduce their
	quality of life. This assessment emphasises the importance of a
	healthy environment, both for development and for combating
	poverty.
Authorizing environment	UNEP: The scenarios were developed through a lengthy
	collaborative process that began with four of the GSG scenarios,
	which were then refined through a series of regional and global
	meetings (Raskin and Kemp-Benedict 2002), with input from the
	IPCC's Special Report on Emissions Scenarios. The emphasis of the
	process was on refining the narratives and giving them regional
	texture. A consortium of modelling teams elaborated on different

	aspects of the scenarios (Potting and Bakkes 2004).
Stakeholders involved in the	Expert Group Meeting (Governments and relevant international
development	organisations)
Time horizon and resolution	2050
Spatial coverage and	global
resolution	
Domains mainly considered	population, economic activity, government (energy prices, taxes,
	environmental policies), lifestyle, technology, land use limitations
Main actors	economic sector
comments	

Scenario name	GEO-4: Policy First
Description	Policy First introduces some measures aimed at promoting
	sustainable development, but the tensions between environment and
	economic policies are biased towards social and economic
	considerations
Correspondence with other	GSG policy reforms, MA techno garden, OECD policy variants,
scenarios	WWV technology, WBSCD GEOpolity,
Type of scenario	explorative
Policies specified	policy limits market failure, climate change mitigation, air pollution,
	protect species diversity and ecosystem services
Purpose	UNEP GEO-4: Environment for Development shows how both
	current and possible future deterioration of the environment can limit
	people's development options and reduce their
	quality of life. This assessment emphasises the importance of a
	healthy environment, both for development and for combating
	poverty.
Authorizing environment	UNEP: The scenarios were developed through a lengthy
	collaborative process that began with four of the GSG scenarios,
	which were then refined through a series of regional and global
	meetings (Raskin and Kemp-Benedict 2002), with input from the
	IPCC's Special Report on Emissions Scenarios. The emphasis of the
	process was on refining the narratives and giving them regional
	texture. A consortium of modelling teams elaborated on different
	aspects of the scenarios (Potting and Bakkes 2004).
Stakeholders involved in the	Expert Group Meeting (Governments and relevant international
development	organisations)
Time horizon and resolution	2050
Spatial coverage and	global
resolution	
Domains mainly considered	population, economic activity, government (energy prices, taxes,
	environmental policies), lifestyle, technology, land use limitations
Main actors	governmental policies
comments	

Scenario name	GEO-4: Security First
Description	Security First focuses on the interests of a minority: rich, national and regional. It emphasizes sustainable development only in the context of maximizing access to and use of the environment by the powerful
Correspondence with other	GSG fortress world, SRES A2, MA order from strength
scenarios	
Type of scenario	explorative
Policies specified	trade barrier, strong national policy, no environmental policies
	except for air pollution

Purpose	UNEP GEO-4. Environment for Development shows how both
i uipose	current and possible future deterioration of the environment can limit
	page lo's development entions and reduce their
	people's development options and reduce them
	quality of life. This assessment emphasises the importance of a
	healthy environment, both for development and for combating
	poverty.
Authorizing environment	UNEP: The scenarios were developed through a lengthy
	collaborative process that began with four of the GSG scenarios,
	which were then refined through a series of regional and global
	meetings (Raskin and Kemp-Benedict 2002) with input from the
	IPCC's Special Penett on Emissions Scenarios. The emphasis of the
	If CC s Special Report on Emissions Sectianos. The emphasis of the
	process was on refining the narratives and giving them regional
	texture. A consortium of modelling teams elaborated on different
	aspects of the scenarios (Potting and Bakkes 2004).
Stakeholders involved in the	Expert Group Meeting (Governments and relevant international
development	organisations)
Time horizon and resolution	2050
Spatial coverage and	global
resolution	
Domains mainly considered	population, economic activity, governemtn (energy prices, taxes,
	environmental policies), lifestyle, technology, land use limitations
Main actors	governmental policies, partly economic
comments	

Scenario name	GEO-4: Sustainability First
Description	Sustainability First gives equal weight to environmental and socio-
	economic policies, accountability, and it stresses transparency and
	legitimacy across all actors. It emphasizes the development of
	effective public-private sector partnerships not only in the context of
	projects but in the area of governance, ensuring that stakeholders
	across the environment-development discourse spectrum provide
	strategic input to policy making and implementation
Correspondence with other	GSG new sustainability, SRES B1, MA adapting mosaic, WWV
scenarios	values and lifestyles, WBCSD Jazz
Type of scenario	explorative
Policies specified	strong global management, climate mitigation, air pollution, protect
	species diversity and ecosystem services
Purpose	UNEP GEO-4: Environment for Development shows how both
	current and possible future deterioration of the environment can limit
	people's development options and reduce their
	quality of life. This assessment emphasises the importance of a
	healthy environment, both for development and for combating
	poverty.
Authorizing environment	UNEP: The scenarios were developed through a lengthy
	collaborative process that began with four of the GSG scenarios,
	which were then refined through a series of regional and global
	meetings (Raskin and Kemp-Benedict 2002), with input from the
	IPCC's Special Report on Emissions Scenarios. The emphasis of the
	process was on refining the narratives and giving them regional
	texture. A consortium of modeling teams elaborated on different
	aspects of the scenarios (Potting and Bakkes 2004).
Stakeholders involved in the	Expert Group Meeting (Governments and relevant international
development	organisations)
Time horizon and resolution	2050
Spatial coverage and	global
resolution	
Domains mainly considered	population, economic activity, government (energy prices, taxes,

	environmental policies), lifestyle, technology, land use limitations
Main actors	economy, government and individual behaviour
comments	

Scenario name	OECD baseline scenario
Description	
Correspondence with other	GSG market forces, SRES A1, MA global orchestration, GEO
scenarios	markets first, WWV business as usual, WBSCD FROG!
Type of scenario	trend
Policies specified	business-as-usual: no new policies
Purpose	The focus of the Outlook is the critical environmental concerns
	facing OECD countries, but the study is global in scope, aim is the
	exploration of options to reduce climate change and greenhouse gas
	emissions
Authorizing environment	OECD
Stakeholders involved in the	
development	
Time horizon and resolution	2005 to 2030 (policies) respectively 2050 (impacts)
Spatial coverage and	global, for policies: OECD, BRIC and the rest of the world, spatial
resolution	resolution of effects: 0.5° grid
Domains mainly considered	agricultural production and trade, energy sector (mitigation of
	climate change, control of urban air pollution), sewage treatment
Main actors	
comments	The Outlook examined drivers of environmental change, specific
	sectors that put the greatest pressure on the environment, and
	resulting environmental impacts. The focus of the Outlook is the
	critical environmental concerns facing OECD countries, but the
	study is global in scope. Global economic patterns were modelled
	using the OECD's JOBS model. These drivers were then used as
	inputs to the PoleStar System to assess potential environmental
	impacts in the scenarios.

Scenario name	OECD- ppOECD
Description	This policy variant implies a broad range of policies for a reduction
_	of greenhouse gas emissions, including a carbon tax, are only
	implemented in the OECD countries starting in 2012.
Correspondence with other	GSG policy reform, MA techno garden, GEO policy first, WWV
scenarios	technology, WBSCD GEOpolity,
Type of scenario	trend (explorative)
Policies specified	broad policy package, including phased carbon tax in OECD
	countries (starting 2012 with US\$ 25/tC), development towards
	maximum feasible reductions of air pollution, installing and
	updrading sewage treatment systems
Purpose	The focus of the Outlook is the critical environmental concerns
	facing OECD countries, but the study is global in scope, aim is the
	exploration of options to reduce climate changeand greenhouse gas
	emissions
Authorizing environment	OECD
Stakeholders involved in the	
development	
Time horizon and resolution	2005 to 2030 (policies) respectively 2050 (impacts)
Spatial coverage and	global, for policies: OECD, BRIC and the rest of the world, spatial
resolution	resolution of effects: 0.5° grid
Domains mainly considered	agricultural production and trade, energy sector (mitigation of
-	climate change, control of urban air pollution), sewage treatment

Main actors	OECD policies
comments	The Outlook examined drivers of environmental change, specific
	sectors that put the greatest pressure on the environment, and
	resulting environmental impacts. The focus of the Outlook is the
	critical environmental concerns facing OECD countries, but the
	study is global in scope. Global economic patterns were modeled
	using the OECD's JOBS model. These drivers were then used as
	inputs to the PoleStar System to assess potential environmental
	impacts in the scenarios.

Scenario name	OECD- 450ppm multigas
Description	A policy variant with carbon taxes. The price for carbon is not fixed,
	but dependent on the greenhouse gas emissions with the goal to
	stabilize the CO ₂ equivalent concentration at 450 ppm.
Correspondence with other	GSG policy reform, MA techno garden, GEO policy first, WWV
scenarios	technology, WBSCD GEOpolity,
Type of scenario	trend (normative)
Policies specified	Climate policy aimed at stabilizing the concentration of the six
	Kyoto gases at 450 ppm carbon dioxide equivalents
Purpose	The focus of the Outlook is the critical environmental concerns
	facing OECD countries, but the study is global in scope, aim is the
	exploration of options to reduce climate changeand greenhouse gas
	emissions
Authorizing environment	OECD
Stakeholders involved in the	
development	
Time horizon and resolution	2005 to 2030 (policies) respectively 2050 (impacts)
Spatial coverage and	global, for policies: OECD, BRIC and the rest of the world, spatial
resolution	resolution of effects: 0.5° grid
Domains mainly considered	agricultural production and trade, energy sector (mitigation of
	climate change, control of urban air pollution), sewage treatment
Main actors	global policies
comments	The Outlook examined drivers of environmental change, specific
	sectors that put the greatest pressure on the environment, and
	resulting environmental impacts. The focus of the Outlook is the
	critical environmental concerns facing OECD countries, but the
	study is global in scope. Global economic patterns were modeled
	using the OECD's JOBS model. These drivers were then used as
	inputs to the PoleStar System to assess potential environmental
	impacts in the scenarios.

Scenario name	OECD-ccglobal2008
Description	This policy variant implies an immediate implementation of carbon
	taxes worldwide.
Correspondence with other	GSG policy reform, MA techno garden, GEO policy first, WWV
scenarios	technology, WBSCD GEOpolity,
Type of scenario	trend (explorative)
Policies specified	uniform global carbon tax, starting in 2008
Purpose	The focus of the Outlook is the critical environmental concerns
_	facing OECD countries, but the study is global in scope, aim is the
	exploration of options to reduce climate changeand greenhouse gas
	emissions

Authorizing environment	OECD
Stakeholders involved in the	
development	
Time horizon and resolution	2005 to 2030 (policies) respectively 2050 (impacts)
Spatial coverage and	global, for policies: OECD, BRIC and the rest of the world, spatial
resolution	resolution of effects: 0.5° grid
Domains mainly considered	agricultural production and trade, energy sector (mitigation of
	climate change, control of urban air pollution), sewage treatment
Main actors	global policies
comments	The Outlook examined drivers of environmental change, specific
	sectors that put the greatest pressure on the environment, and
	resulting environmental impacts. The focus of the Outlook is the
	critical environmental concerns facing OECD countries, but the
	study is global in scope. Global economic patterns were modeled
	using the OECD's JOBS model. These drivers were then used as
	inputs to the PoleStar System to assess potential environmental
	impacts in the scenarios.

Scenario name	IAASTD baseline scenario
Description	
Correspondence with other	
scenarios	
Type of scenario	trend
Policies specified	no new policies (national and international agricultural policy)
Purpose	
Authorizing environment	IAASTD
Stakeholders involved in the	Private and public sector participation in writing teams
development	
Time horizon and resolution	50 years backward and forward
Spatial coverage and	global
resolution	
Domains mainly considered	food production, water supply, energy production and use, land use
	change, climate, trade policies and markets
Main actors	economy
comments	

Scenario name	MIMES/GUMBO: baseline
Description	
Correspondence with other	OECD baseline
scenarios	
Type of scenario	trend
Policies specified	no new policies
Purpose	
Authorizing environment	
Stakeholders involved in the	
development	
Time horizon and resolution	
Spatial coverage and	global
resolution	
Domains mainly considered	
Main actors	
comments	

Scenario name	MIMES/GUMBO: star trek
Description	higher rates of consumption and investment in built capital, lower
	investment in human, social and natural capital and the real state of
	the world corresponds to the optimistic parameter assumption set
	(new alternative energy comes on line, etc.)
Correspondence with other	
scenarios	
Type of scenario	explorative
Policies specified	higher rates of consumption and investment in built capital, lower
_	investment in human, social and natural capital
Purpose	
Authorizing environment	
Stakeholders involved in the	
development	
Time horizon and resolution	
Spatial coverage and	global
resolution	
Domains mainly considered	
Main actors	
comments	

Scenario name	MIMES/GUMBO: big government
Description	set of technologically sceptical policies (lower rates of consumption
	and investment in built capital, higher rates of investment in human,
	social and natural capital) and the real state of the world corresponds
	to the optimistic parameter assumption set
Correspondence with other	
scenarios	
Type of scenario	explorative
Policies specified	technologically sceptical policies (lower rates of consumption and
	investment in built capital, higher rates of investment in human,
	social and natural capital)
Purpose	
Authorizing environment	
Stakeholders involved in the	
development	
Time horizon and resolution	
Spatial coverage and	global
resolution	
Domains mainly considered	
Main actors	
comments	

Scenario name	MIMES/GUMBO: mad max
Description	higher rates of consumption and investment in built capital, lower investment in human, social and natural capital) and the real state of the world corresponds to the sceptical parameter assumption set (no new energy forms come on line, etc.)
Correspondence with other scenarios	
Type of scenario	explorative

Policies specified	higher rates of consumption and investment in built capital, lower
	investment in human, social and natural capital
Purpose	
Authorizing environment	
Stakeholders involved in the	
development	
Time horizon and resolution	
Spatial coverage and	global
resolution	
Domains mainly considered	
Main actors	
comments	

Scenario name	MIMES/GUMBO: ecotopia
Description	technologically sceptical policies and the real state of the world
	corresponds to the sceptical parameter assumption set
Correspondence with other	
scenarios	
Type of scenario	explorative
Policies specified	technologically sceptical policies (lower rates of consumption and
	investment in built capital, higher rates of investment in human,
	social and natural capital)
Purpose	
Authorizing environment	
Stakeholders involved in the	
development	
Time horizon and resolution	
Spatial coverage and	global
resolution	
Domains mainly considered	
Main actors	
comments	

Scenario name	WWV: business as usual
Description	current water policies continue, high inequity
Correspondence with other	GSG market forces, SRES A1, OECD baseline, MA global
scenarios	orchestration, GEO markets first, WBSCD FROG!
Type of scenario	explorative
Policies specified	no, focus on demographic, technoloigcal and lifestyle development
Purpose	To increase awareness of a rising global water crisis.
Authorizing environment	Word Water Counsil
Stakeholders involved in the	
development	
Time horizon and resolution	2025
Spatial coverage and	global
resolution	
Domains mainly considered	lifestyle choice, technology development, demographics, economics
Main actors	institution and economy
comments	(focus on water, agricultural use, storage, scarcety, distribution)

Scenario name WWV: technology, economic and the private sector
--

Description	market-based mechanisms, better technology
Correspondence with other	GSG policy reforms, MA techno garden, GEO policy first, OECD
scenarios	policy variants, WBSCD GEOpolity,
Type of scenario	explorative
Policies specified	no, focus on demographic, technological and lifestyle development
Purpose	To increase awareness of a rising global water crisis.
Authorizing environment	Word Water Counsil
Stakeholders involved in the	
development	
Time horizon and resolution	2025
Spatial coverage and	global
resolution	
Domains mainly considered	lifestyle choice, technology development, demographics, economics
Main actors	economy (private sector)
comments	(focus on water, agricultural use, storage, scarcety, distribution)

Scenario name	WWV: values and lifestyles
Description	less water intensive activities, ecological preservation
Correspondence with other	GSG new sustainability, SRES B1, MA adapting mosaic, GEO
scenarios	sustainability first, WBCSD Jazz
Type of scenario	explorative
Policies specified	no, focus on demographic, technological and lifestyle development
Purpose	To increase awareness of a rising global water crisis.
Authorizing environment	Word Water Counsil
Stakeholders involved in the	
development	
Time horizon and resolution	2025
Spatial coverage and	global
resolution	
Domains mainly considered	lifestyle choice, technology development, demographics, economics
Main actors	lifestyle choices (individual citizens, consumers)
comments	(focus on water, agricultural use, storage, scarcety, distribution)

Scenario name	WBCSD: FROG!
Description	market-driven growth, economic globalization
Correspondence with other	GSG market forces, SRES A1, OECD baseline, MA global
scenarios	orchestration, GEO markets first, WWV business as usual
Type of scenario	explorative
Policies specified	open markets
Purpose	to engage the business community in the debate on sustainable
	development
Authorizing environment	World Business Council for Sustainable Development; the scenarios
	were developed in an open process involving representatives from 35
	organizations.
Stakeholders involved in the	representatives from 35 organizations
development	
Time horizon and resolution	2000-2050
Spatial coverage and	global
resolution	
Domains mainly considered	ecosystem sustainability, economy, technology
Main actors	economy
comments	

Scenario name	WBCSD: GEOpolity
Description	top-down approach to sustainability
Correspondence with other	GSG policy reforms, MA techno garden, GEO policy first, OECD
scenarios	policy variants, WWV technology
Type of scenario	explorative
Policies specified	global policies aiming at sustainable development
Purpose	to engage the business community in the debate on sustainable
	development
Authorizing environment	World Business Council for Sustainable Development; the scenarios
	were developed in an open process involving representatives from 35
	organizations.
Stakeholders involved in the	representatives from 35 organizations
development	
Time horizon and resolution	2000-2050
Spatial coverage and	global
resolution	
Domains mainly considered	ecosystem sustainability, economy, technology
Main actors	global policies
comments	

Scenario name	WBCSD: JAZZ
Description	bottom-up approach to sustainability, ad hoc alliances, innovation
Correspondence with other	GSG new sustainability, SRES B1, MA adapting mosaic, GEO
scenarios	sustainability first, WWV values and lifestyles
Type of scenario	explorative
Policies specified	governmental activity limitd to local level
Purpose	to engage the business community in the debate on sustainable
	development
Authorizing environment	World Business Council for Sustainable Development; the scenarios
	were developed in an open process involving representatives from 35
	organizations.
Stakeholders involved in the	representatives from 35 organizations
development	
Time horizon and resolution	2000-2050
Spatial coverage and	global
resolution	
Domains mainly considered	ecosystem sustainability, economy, technology
Main actors	Lifestyle (individual citizens, consumers)
comments	

Table 4: General information on scenarios

Scenario name	EURuralis: global economy
Description	Societies in the Global economy scenario are predominantly driven
	by market-based solutions. Trade barriers are gradually eliminated;
	CAP subsidies are phased out, and so are transfers of capital to
	support EU regions lagging behind economically. Government roles
	are limited to core responsibilities, like basic education, security and
	law enforcement (Westhoek et al., 2006)
Correspondence with other	SRES A1
scenarios	
Type of scenario	explorative with extra policy options
Policies specified	agricultural subsidies abolished,

Purpose	Support European governments on decisions about future
Authorizing environment	
Stakeholders involved in the	Scientific advisory group and policy advisory group
development	
Time horizon and resolution	2030
Spatial coverage and	Europe
resolution	
Domains mainly considered	macro-economy, demography, agro-technology, border support,
	income support, LFA, nature policy, spatial policy, erosion policy,
	energy policy
Main actors	economy, multilateral cooperation, strong technology development
comments	

Scenario name	EURuralis: global cooperation
Description	The Global co-operation scenario assumes intensive multilateral
	international co-operation on many issues. Tariff barriers restricting
	market access are gradually removed but international food safety
	standards are raised and new mechanisms are introduced to ensure
	high social and environmental production standards of traded goods
	(Westhoek et al., 2006).
Correspondence with other	SRES A2
scenarios	
Type of scenario	explorative with extra policy options
Policies specified	some agricultural subsidies,
Purpose	Support European governments on decisions about future
Authorizing environment	
Stakeholders involved in the	Scientific advisory group and policy advisory group
development	
Time horizon and resolution	2030
Spatial coverage and	Europe
resolution	
Domains mainly considered	macro-economy, demography, agro-technology, border support,
	income support, LFA, nature policy, spatial policy, erosion policy,
	energy policy
Main actors	economy, multilateral cooperation for sustainability, nature
	conservation and equity, strong technology development
comments	

Scenario name	EURuralis: continental markets
Description	The Continental markets scenario assumes a view that social and cultural values can best be preserved in regional political alliances, within which nation states should keep as much sovereignty as possible. Agricultural protection measures to shield this market remain in place to safeguard food security (Westhoek <i>et al.</i> , 2006).
Correspondence with other	SRES B1
scenarios	
Type of scenario	explorative with extra policy options
Policies specified	agricultural subsidies abolished,
Purpose	Support European governments on decisions about future
Authorizing environment	
Stakeholders involved in the	Scientific advisory group and policy advisory group
development	
Time horizon and resolution	2030

Spatial coverage and	Europe
resolution	
Domains mainly considered	macro-economy, demography, agro-technology, border support, income support, LFA, nature policy, spatial policy, erosion policy, energy policy
Main actors	economy, regional cooperation for sustainability, nature conservation and equity
comments	

Scenario name	EURuralis: regional communities
Description	In the Regional communities scenario, a high value is attributed to
_	the subsidiarity principle and, in fact, many issues are addressed at a
	level below that of the nation-state. Few benefits are attributed to
	market-based solutions; shielded markets are preferred so as to
	address the strong environmental and socio-cultural concerns that
	typify this scenario (Westhoek et al., 2006).
Correspondence with other	SRES B2
scenarios	
Type of scenario	explorative with extra policy options
Policies specified	only agri-environmental payments,
Purpose	Support European governments on decisions about future
Authorizing environment	
Stakeholders involved in the	Scientific advisory group and policy advisory group
development	
Time horizon and resolution	2030
Spatial coverage and	Europe
resolution	
Domains mainly considered	macro-economy, demography, agro-technology, border support,
	income support, LFA, nature policy, spatial policy, erosion policy,
	energy policy
Main actors	government, regional cooperation for sustainability, nature
	conservation and equity
comments	

Scenario name	EURuralis: CAP market support variants				
Description	These variants are implemented on top of one of the scenarios and				
	related to market price supports in the EU which can be maintained				
	or abolished.				
Correspondence with other					
scenarios					
Type of scenario	policy variants				
Policies specified	full market liberalization for agricultural products to constant price				
	support				
Purpose	Support European governments on decisions about future				
Authorizing environment					
Stakeholders involved in the	Scientific advisory group and policy advisory group				
development					
Time horizon and resolution	2030				
Spatial coverage and	Europe				
resolution	_				
Domains mainly considered	macro-economy, demography, agro-technology, border support,				
	energy policy				

Main actors	
comments	

Scenario name	EURuralis: CAP income support variants				
Description	In these policy variants income support can be abolished, maintained				
	or increased.				
Correspondence with other					
scenarios					
Type of scenario	policy variants				
Policies specified	abolishment of income support to increasing income support for				
	farmers				
Purpose	Support European governments on decisions about future				
Authorizing environment					
Stakeholders involved in the	Scientific advisory group and policy advisory group				
development					
Time horizon and resolution	2030				
Spatial coverage and	Europe				
resolution					
Domains mainly considered	macro-economy, demography, agro-technology, border support,				
	income support, LFA, nature policy, spatial policy, erosion policy,				
	energy policy				
Main actors					
comments					

Scenario name	EURuralis: biofuel variants				
Description	Different biofuel variants exist from no or low obligations for				
_	biofuels to 11.5% share of biofuels in the energy sector.				
Correspondence with other					
scenarios					
Type of scenario	policy variants				
Policies specified	no targets (no taxes and subsidies) to 11.5% obligations in 2010				
Purpose	Support European governments on decisions about future				
Authorizing environment					
Stakeholders involved in the	Scientific advisory group and policy advisory group				
development					
Time horizon and resolution	2030				
Spatial coverage and	Europe				
resolution					
Domains mainly considered	macro-economy, demography, agro-technology, border support,				
	income support, LFA, nature policy, spatial policy, erosion policy,				
	energy policy				
Main actors					
comments					

Scenario name	EURuralis: less favoured area policy variants
Description	Policy variants with abolishment of support for less favourite areas
	to increase/shift of areas.
Correspondence with other	
scenarios	
Type of scenario	policy variants

Policies specified	no special policy, current policy or new policies based on slope and altitude of land					
Purpose	Support European governments on decisions about future					
Authorizing environment						
Stakeholders involved in the	Scientific advisory group and policy advisory group					
development						
Time horizon and resolution	2030					
Spatial coverage and	Europe					
resolution						
Domains mainly considered	macro-economy, demography, agro-technology, border support, income support, LFA, nature policy, spatial policy, erosion policy, energy policy					
Main actors						
comments						

Table 4: General information on scenarios

Scenario name	ATEAM A1					
Description	Rapid economic growth, little concern about environment, increase					
_	in mass-tourism					
Correspondence with other	SRES A1					
scenarios						
Type of scenario	explorative					
Policies specified	recreation focus in protected areas					
Purpose	Main objective is to assess the vulnerability of human sectors relying					
	on ecosystem services with respect to global change					
Authorizing environment	ATEAM is a consortium consisting of 18 scientific institutes					
Stakeholders involved in the	Scenarios were developed in intensive cooperation with stakeholders,					
development	primarily ecosystem managers and policy advisors.					
Time horizon and resolution	baseline: 2000; 2020, 2050, 2080					
Spatial coverage and	Europe					
resolution						
Domains mainly considered	land use change based on economy (GDP), techological					
	development, citizen participation, governmental policies, tourism,					
	rural development, spatial planning					
Main actors	global economy					
comments						

Scenario name	ATEAM A2					
Description	Moderate economic growth, strong EU, little concern about					
_	environment, decrease in tourism in general but increase in regional					
	tourism					
Correspondence with other	SRES A2					
scenarios						
Type of scenario	explorative					
Policies specified	weak nature conservation policies, protection declines					
Purpose	Main objective is to assess the vulnerability of human sectors relying					
	on ecosystem services with respect to global change					
Authorizing environment	ATEAM is a consortium consisting of 18 scientific institutes					
Stakeholders involved in the	Scenarios were developed in intensive cooperation with stakeholders,					
development	primarily ecosystem managers and policy advisors.					
Time horizon and resolution	baseline: 2000; 2020, 2050, 2080					
Spatial coverage and	Europe					
resolution						

Domains mainly considered	land use change based on economy (GDP), techological
	development, citizen participation, governmental policies, tourism, rural development, spatial planning
Main actors	regional economy
comments	

Scenario name	ATEAM B1					
Description	Moderate economic growth, great concern about environment,					
	styrong central government, increase in regional recreation, decrease					
	in tourism					
Correspondence with other	SRES B1					
scenarios						
Type of scenario	explorative					
Policies specified	strict protection and expansion of selected areas					
Purpose	Main objective is to assess the vulnerability of human sectors relying					
	on ecosystem services with respect to global change					
Authorizing environment	ATEAM is a consortium consisting of 18 scientific institutes					
Stakeholders involved in the	Scenarios were developed in intensive cooperation with stakeholders,					
development	primarily ecosystem managers and policy advisors.					
Time horizon and resolution	baseline: 2000; 2020, 2050, 2080					
Spatial coverage and	Europe					
resolution						
Domains mainly considered	land use change based on economy (GDP), techological					
	development, citizen participation, governmental policies, tourism,					
	rural development, spatial planning					
Main actors	global government					
comments						

Scenario name	ATEAM B2					
Description	Low economic growth, great concern about environment, decrease in					
-	tourism, increase in eco-recreation, strong regional governments					
Correspondence with other	SRES B2					
scenarios						
Type of scenario	explorative					
Policies specified	local policies for nature conservation					
Purpose	Main objective is to assess the vulnerability of human sectors relying					
	on ecosystem services with respect to global change					
Authorizing environment	ATEAM is a consortium consisting of 18 scientific institutes					
Stakeholders involved in the	Scenarios were developed in intensive cooperation with stakeholders,					
development	primarily ecosystem managers and policy advisors.					
Time horizon and resolution	baseline: 2000; 2020, 2050, 2080					
Spatial coverage and	Europe					
resolution						
Domains mainly considered	land use change based on economy (GDP), techological					
	development, citizen participation, governmental policies, tourism,					
	rural development, spatial planning					
Main actors	regional government					
comments						

Scenario name	type	International acknowledgement	Width of spectrum of drivers	Richness of detail including sectoral detail	Models that have been used with scenario
IPCC-SRES	explorative	very high	wide set of quantitative indicators	Limited	AIM, IMAGE
МА	explorative	high	wide set of quantitative indicators	High	IMPACT, IMAGE, WaterGAP, EwE, SAR
GEO-4	explorative	high	wide set of quantitative indicators	High	AIM, IMAGE, PoleStar, WaterGAP, EcoOcean (EwE)
GSG	normative	high, SRES, MA and GEO-scenarios are based on GSG scenarios, however, GSG scenarios are normative instead of explorative	narrative	limited	PoleStar
OECD baseline	trend with policy options	high	wide set of quantitative indicators	High	WaterGAP, IMAGE, GLOBIO
IAASTD baseline	trend with policy options	moderate	wide set of quantitative indicators	High	IMAGE, IMPACT- WATER, GLOBIO, EcoOcean (EwE)
MIMES/GUMBO	explorative	limited	wide set of quantitative indicators	Moderate	MIMES, GUMBO
EURuralis	explorative with policy options	Moderate (high within Europe)	moderate	Moderate	GTAP, IMAGE, CLUE
WWV	explorative	Limited to water management community	moderate	Moderate	
WBCSD	explorative	limited	moderate	Moderate	
ATEAM	explorative with policy options	moderate	moderate	Moderate	

1.5 Scenario summary with information relevant for TEEB

1.6 Summary of models with respect to drivers, pressures and impacts

1.6.1 Integrated Assessment Models

Model name AIM	GUMBO	IFs	IGSM	IIASA	IMAGE	MIMES
natural drivers and Climat	e change climate	climate	Climate	Climate change	Climate change	climate
environmental pressures (as af	fected by		change (as	(as affected by	(as affected by	
emissio	ons and		affected by	emissions and	emissions and	
policy)			emissions and	policy)	policy)	
			policy)			
human drivers and energy	demand Human	demograph	capital, labour	demography,	Demography,	Human population,
pressures (land	use population,	у,		economy, energy	macro-	knowledge and social
change) knowledge and	economic,		demand	ecomomy,	institutions (rules and
	social	agricultural,			agricultural	norms) drive the rate
	institutions	energy,			demand and	of the material and
	(rules and	d socio-			trade (from	energy flux.
	norms) drive the	e political,			GTAP)	
	rate of the	e internationa				
	material and	l I political				
	energy flux.				D 1' 1 · · ·	
policies scenari	o-inputs scenario inputs	internationa	scenario-inputs	scenario-inputs	Policy decision	scenario inputs
		l politics			support model	
					FAIR, scenario	
	1 11 1				inputs	
land use land u	se change 11 biomes	s not spatially	spatially	spatially explicit	geographically	spatially explicit,
model	included, globally	explicit	explicit		explicit	different types: forest,
spatial	aggregated				modelling of	wetland, grass, urban,
	(open ocean,	,			land use/cover	desert
	coastal ocean,	,				
	IOIESIS,					
	grassianus,					
	wettands,					
	lolzog/riverg					
	lakes/rivers,					

Model name	AIM	GUMBO	IFs	IGSM	IIASA	IMAGE	MIMES
		croplands,					
		urban): areal					
		land use, not					
		spacially					
		explicit					
biodiversity	Vegetation	Not available	Not	Not available	Not available	MSA via	Not available
	distribution		available			GLOBIO	
ecosystem function	Water balance	carbon, water		water and	carbon cycle	C, N cycle, LAI,	Soil formation,
-		and nutrient		carbon	(MAGICC,	vegetation	nutrient cycling
		cycles,		cycling, NPP	DIMA)	distribution	, C
		decomposition		, 0,	,		
ecosystem services	water supply,	soil formation,	Agricultural	agriculture, air	timber	food production,	Food production,
2	food and timber	gas regulation,	production,	pollution, sea	production,	forestry module,	production of raw
	production,	climate	including	level, carbon	agricultural food	water	materials, climate
	greenhouse gas	regulation,	marine	sequestration,	production,	(forthcoming),	regulation, waste
	emissions, air	nutrient cycling,	fishing and	human health	renewable water	Carbon flux,	assimilation .
	pollution, carbon	disturbance	aquaculture.	impacts, air	resources	carbon	disturbance
	sequestration.	regulation,	Human	pollution.		plantations,	regulation, cultural
	human health	recreation and	health, CO ₂	carbon stocks		ocean carbon	and recreational
	(malaria	culture, and	emissions			model, water-	
	distribution).	waste				erosion	
	flood damage/sea	assimilation,				sensitivity, air	
	level rise	water, harvested				pollution	
		organic matter.				1	
		mined ores, and					
		extracted fossil					
		fuel					
economic value/human	human health	valuation:	Human	Health			valuation: marginal
well-being		marginal	health	impacts, policy			product of ecosystem
8		product of		costs			services in both the
		ecosystem					model's production
		services in both					and welfare functions
		the model's					
		production and					

Model name	AIM	GUMBO	IFs	IGSM	IIASA	IMAGE	MIMES
		welfare					
		functions (food,					
		energy, GWP					
		and welfare per					
		capita)					

1.6.2 Economic models, scenario-building tools, IMPACT-WATER and CLUE

Model name	PoleStar	Threshold 21	GTAP	ENV-Linkages	IMPACT-	CLUE
					WATER	
natural drivers and environmental pressures	resources, pollution	Not available	Not available	Climate change (as affected by emissions and	water availability, soil conditions,	climate, land suitability for crops, effects of
				policy)	climate	past land use, impact of pests, weeds and diseases
human drivers and pressures	GDP and population development, more specified socio- economic drivers, pollution	socio-economic factors, resources, technology	production functions including capital, labour and land prices	socio-economic factors, policy instruments (carbon taxes, tradable emission permits, regulatory policies)	population development, economy, technology development	population size and density, technology level, political structure, economy
policies	policy options	policy options	policy options	policy options	policy options	Scenario inputs
land use	yes	spatially explicit	explicit different land use types (land price and suitability for crops)	spatially explicit	spatially explicit, river basin scale	geographically explicit modeling of land use/cover
biodiversity	Not available	Not available	Not available	Not available	Not available	Not available

Model name	PoleStar	Threshold 21	GTAP	ENV-Linkages	IMPACT-	CLUE
					WATER	
ecosystem function	Not available	Not available	Not available	Not available	N, P and S	Not available
					balance, water	
					cycle	
ecosystem services	water resources, raw	agriculture,	agricultural food	timber	agricultural food	not available,
	materials and	consumption of	production	production	production (crops	except for land
	agriculture, solid	natural resources			and investock),	sused for
	waste management,	(renewable and			water supply	forostru and
	loadings	resource				and arazing
	loadings	depletion (e.g.				grazing
		forests) soil				
		erosion land				
		degradation.				
		greenhouse gas				
		emissions, air				
		and water quality				
		(pollution)				
economic value/human	income distribution	GDP			Percentage and	
well-being	and poverty				number of	
					malnourished	
					preschool	
					children, Per-	
					capita calorie	
					availability from	
					Foods, prices	

1.6.3 Biogeochemical models

Model name	PICUS	LPJmL	CENTURY	Agro-IBIS	IBIS	SAVANNA
Natural drivers	climate	climate	climate	climate	climate	Climate, fire
and environmental						

Model name	PICUS	LPJmL	CENTURY	Agro-IBIS	IBIS	SAVANNA
pressures						
human drivers and pressures	forestry management	land use change	land use	land use, agricultural management practices (fertilization, irrigation)	Land use	land management (stocking density, fire)
policies	Via management input	Not directly, via land use only	Not directly, via land use only	Not directly, via land use only	Not possible	Yes, via land management, socio- economic factors
land use	spatially explicit	spatially explicit	not spatially explicit, detailed land management options (new ones can be defined)	spatially explicit	spatially explicit	spatially explicit (fractional cover of grid cells by different plant types)
biodiversity	forest species composition (diversity, naturalness indicators)	Vegetation composition (functional types)	No included	Vegetation composition (functional types)	Vegetation composition (functional types)	flora and fauna abundance (for defined functional groups)
ecosystem function	carbon sequestration, soil moisture (water cycling), N cycling, NPP	CO ₂ exchange, water balance, annual NPP,	C, N, P, S and water balance, decomposition	Water cycling, energy balance, carbon flux, N balance, NPP, LAI, phenology	NPP, LAI, phenology, water cycle, energy balance	primary production, plant competition for water, light and nutrients, herbivory, predation, nutrient cycling
ecosystem services	timber production	Annual NPP, crop production	grass, tree and crop production, water supply	water balance, crop production	NPP, water runoff	livestock production, water budget (runoff)
economic value/human well- being	Costs and benefits of management practices	Not available	Not available	Not available	Not available	Costs and benefits of management practices

1.6.4 Hydrological models

Model name	WaterGAP	(E-) SWAT	WBM	
natural drivers and	Climate, including	climate, topology	climate, topology	
environmental pressures	climate change ,			
	disturbances (fire)			
human drivers and	Socio-economic	Land	demography	
pressures	factors (population	use/management		
	growth, GDP):	(pollution)		
	energy production,			
	livestock numbers,			
	area irrigated,			
	population size			
policies	Via scenario input	Via land use	Not available	
land use	Geographically	spatially explicit	spatially explicit	
	explicit modeling of			
	land use/cover			
biodiversity	no	no	no	
ecosystem function	water cycle (runoff,	water cycle	water cycle	
	discharge)			
ecosystem services	Water supply	water supply,	water supply,	
		erision control	livestock	
			production	
economic value/human Water scarcity		Not available	Not available	
well-being				

1.6.5 Biodiversity models

Model name	GLOBIO	MIRABEL	Biodiversity intactness index	Species area relationship (SAR)	GARP-based species distribution models	EUROMOVE
natural drivers and environmental pressures	climate change, N deposition	climate change, N deposition	none	climate change	climate change	climate change
human drivers and pressures	land use change, N deposition, infrastructure, fragmentation	land use change, N deposition, infrastructure, fragmentation	land use	habitat loss and fragmentation (land use change), N deposition	None (via greenhouse gans emissions)	Land use
policies	Via IMAGE	Via land use, pollution	Via land use	Via land use	Via climate change	Via climate change and land use
land use	spacially explicit (input variable)	EUNIS land use classification	spatially explicit, classification: from protected to moderate use, degraded, cultivated, urban and plantation	not spatially explicit (aggregated at biogeographical units)	spatially explicit	spatially explicit
biodiversity	MSA (mean species abundance of original species)	habitats at risk	biodiversity intactness index	number of species	number of species, species distribution	number of species, species distribution
ecosystem function	Not available	habitats at risk	Not available	Not available	Not available	Not available
ecosystem services	Not available	Not available	Not available	Not available	Not available	Not available
economic value/human well-being	Not available	Not available	Not available	Not available	Not available	Not available

1.6.6 Ocean models I

Model name	ASSETS	Atlantis	Aus-ConnIe	Cumulative Threat	EwE, EcoSpace &	GEEM - General
				Model for the global	EcoOcean	Equilibrium
				ocean		Ecosystem Model
natural drivers and	Capacity of a system	Biological,	Sea level; Wind	Vulnerability/sensitivity	Population dynamics;	Population dynamics;
environmental	to flush/dilute	chemical,	fields; Particle	of ecosystems	Habitat preferences;	trophic interactions;
pressures	nutrient loads	ecological and	trajectories;		Trophic interactions.	biomass fluxes.
		physical drivers	Geostrophic			
		related to the	currents; Wind			
		ecosystem	forced			
			components;			
			Ocean currents;			
human drivers and	Input of Nitrogen	Fisheries	Not applicable	17 different	Fisheries	Human impacts on
pressures	and Phosphorous;			anthropogenic drivers		the energy/biomass
	Poor management of			covering pelagic and		flows within a food
	watersheds.			demersal,fishing,		web, e.g. culling fish
				climate change,		species through
				pollution, transport, and		fisheries or habitat
	D 1 - 1 - 1' - 1	D 1 - 2	NY :	invasive species.	D 1 2 1 1	modification.
policies	Related policies are:	Relating most	None specified	None considered but	Relating most closely	Aim not model is to
	Clean Water Act of	closely to fisheries		this model could be	to fisheries and	influence more
	19/2 (US); Air	and environmental		used to advise on a	environmental	effective policy-
	Pollution Prevention	protection policies.		wide range of marine	protection policies.	making through
	and Control Act of			protection/use policies.		providing a link
	19/7 (US); Coastal					between the
	Zone Management of					ecosystem and its
	19/2 (US); Harmful					economic valuation.
	Algal Bloom and					
	Hypoxia Research					
	and Control Act of					
	1998 (US); EU					
	water Framework					

Model name	ASSETS	Atlantis	Aus-ConnIe	Cumulative Threat	EwE, EcoSpace &	GEEM - General
				Model for the global	EcoOcean	Equilibrium Ecosystem Model
	Directive (EU); Urban Wastewater Treatment Directive (EU); Nitrates Directive (EU); Shellfish Directive (EU); Bivalve Transport Directive (EU); OSPAR Convention; HELCOM Convention; and Barcelona Convention.			occan		
land use	Land-based nutrient run-off	Not applicable	Not applicable	Land-based pollution	Not applicable.	Model can be used to assess the impacts of land modification/use on the energy relationships in food webs.
biodiversity	Macroalgae, diatoms, flagellates, pelagic and benthic alage, harmful algae.	Dynamics of functional groups within a given food web (with Nitrogen as the common currency between these groups)	Larvae (dispersal and recruitment); other species influenced by ocean currents; connectivity of genetic resources.	Implicit through the focus on ecosystems.	Biodiversity impacts of fisheries, <i>e.g.</i> direct loss of biodiversity through Depeletion Index.	Impacts of human interactions on the trophic dynamics of species food-webs within an ecosystem with the view to linking economic valuation information to this.
ecosystem function	Loss of SAV; Dissolved Oxygen; Nuisance and Toxic	Fisheries impacts on ecosystem function and	Connectivityofecosystemsinc.Larvaland	Implication that increased cumulative threat index would lead	Fisheries impacts on ecosystem function, e.g. Loss of functional	Negative impacts on food webs can lead to loss of functional

Model name	ASSETS	Atlantis	Aus-ConnIe	Cumulative Threat	EwE, EcoSpace &	GEEM - General
				Model for the global	EcoOcean	Equilibrium
				ocean		Ecosystem Model
	Algal Blooms;	structure.	contaminant	to loss of ecosystem	groups, disaggregation	groups, trophic
	Eutrophication		dispersal.	function.	of communities,	cascades, and a
	leading to dead		-		change in community	reduction of
	zones, thus loss of				controls (i.e. Bottom-	ecosystem
	ecosystem function.				up/top-down).	functionality in
	5					general.
ecosystem services	Negative impact on	Unsustainable use	Connectivity	Approach provides a	Unsustainable use of	Trophic controls of
-	water quality, thus	of provisioning	affects larval	structured framework	provisioning services;	fisheries; carbon and
	affecting	services; Disruption	recruitment for	for quantifying the	Destruction of	nutrient cycling;
	fisheries/aquaculture;	to trophic structure;	fisheries;	ecological tradeoffs	supporting habitats;	ecosystem reactions
	ecosystem health;	Loss of	increases genetic	associated with	Loss of	to impacts including
	and human uses.	connectivity/genetic	diversity leading	different human uses of	connectivity/genetic	loss of functionality
		resources.	to increased	marine ecosystems and	resources;	leads to potential
			redundancy and	for identifying locations	,	impact on ecosystem
			higher ecosystem	and strategies to		services;
			resilience and	minimize ecological		
			functioning:	impact and maintain		
			Dispersal of	sustainable use		
			contaminants and			
			understanding			
			their potentially			
			negative effects			
			on ecosystem			
			services.			
economic value/human	Negatively impact	Food security;	Understanding	Model implies that	Bioaccumulation	Negatively impact
well-being	fisheries/aquaculture;	economic/fisheries	sustainability of	areas that are more	effects; food security;	fisheries; possible
0	revenue from	resource value of	fisheries,	highly impacted will	economic value of	threats to food
	recreation; Toxic	ecosystem goods	understanding	not be able to provide	ecosystem goods and	security; negative
	algal blooms can be	and services under	dispersal of	the quality and range of	services under	impacts on
	harmful to human	different	contaminants	ecosystem services as	different management	livelihoods if
	health.	management	possibly harmful	less impacted areas.	scenarios;	ecosystem
		scenarios.	to marine	Reduced goods and		functionaility/services

Model name	ASSETS	Atlantis	Aus-ConnIe	Cumulative Threat	EwE, EcoSpace &	GEEM - General
				Model for the global	EcoOcean	Equilibrium
				ocean		Ecosystem Model
			resources and	services will have a		are lost potentially
			humans thus	general negative impact		impacting vulnerable
			reducing	on human health.		coastal communities.
			ecosystem			
			services, general			
			understanding of			
			the sustaiability			
			and connectivity			
			of ecosystem			
			services.			

1.6.7 Ocean model II

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Change on Global	(Versions 1.0			
	Biodiversity	and 2.0)			
natural drivers and	Population	Micro-scale	Relative slope,	Carbon	Biological: age
environmental pressures	dynamics; Species	drivers of Sea	land cover class,	dynamics;	(day), length
	habitat preferences;	Use Functions	and precipitation	nutrient	(mm), stage (egg,
	Oceanographic	(seagrass and	are used for the	dynamics;	yolk-sac larva, or
	variables (e.g.	coral reefs); Land	Inland pollution	trophodynamics;	feeding larva),
	Bathymetry).	Use functions	and erosion	physical drivers	location
		(Mangrove;	model.	such as climate	(longitude/latitude)
		Nature/forest);	Otherwise,	and weather (and depth (m), and
		Land use features	natural drivers,	when linked with	status (alive or
		(Sea; Inland	such as disease	physical models).	dead). Physical:
		water); and	and bleaching,		current velocities
		Macro-scale	are not		(m s-1),
		drivers based	considered.		temperature (*C),
		around water and			and salinity. The
		ecology.			physical inputs are

Change on Global (Versions 1.0	
Biodiversity and 2.0)	
archive oceani simula "Regio Model Systen or the Applic Region (MAR	ed from ic ations of the onal Oceanic lling n" (ROMS) e "Model for cations at nal Scale" &S).
human pressuresAnthropogenic climate changeMicro-scale functions of Land Use functions (Agriculture; Rice Tourism; Urban residential; Rural residential); and Land use features (Airport; Harbour; Beach); and Macro-scale driversCoastal development; Marine pollution; Overexploitation and Destructive fishing; Inland Pollution and Erosion.Not availableNot av	/ailable
policies Not specified, Future policy Outputs can be Production of Nones	specified
nowever, model choices under the and nave been accurate	
outputs are relevant influence of used to inform scenarios by the	
and marine demographic and have been used to inform	

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Change on Global	(Versions 1.0			
	Biodiversity	and 2.0)			
	protection policies	growth or	used to set	policy-makers on	
	(through	changing	regional and local	decisions relating	
	identification of	economic	priorities - such	to sectors such as	
	hotspots).	demand can be	as in Sabah,	fisheries	
		tested.	where the Reefs	management and	
			at Risk analysis	climate change.	
			aided the		
			development of		
			legislation		
			restricting coastal		
			development		
land use	Not applicable	Land Use	Land cover type	Not applicable	Not applicable
		functions	and inland		
		(Agriculture;	sources of		
		Rice culture;	pollution.		
		Shrimp culture;			
		Industry;			
		Tourism; Urban			
		residential; Rural			
		residential;			
		Mangrove;			
		Nature/forest);			
		and Land use			
		features (Sea;			
		Inland water;			
		Airport; Harbour;			
		Beach).			
biodiversity	Current and future	Impacts of	Coral reef	Lower trophic	Larvae (dispersal
-	distributions of 1066	policies and	degradation is	levels of pelagic	and recruitment);
	commercial fish	future	considered in	and benthic	connectivity of
	species are	demographic and	terms of major	marine systems.	genetic resources.
	modelled.	socio-economic	changes in	-	

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Change on Global	(Versions 1.0			
	Biodiversity	and 2.0)			
		change on coastal	species		
		zone biodiversity,	composition and		
		in particular,	relative species		
		pollution impacts	abundance.		
		on rivers and the			
		coast, destruction			
		of habitats for			
		food production			
		increasing			
		erosion and			
		sedimentation.			
ecosystem function	Disassociation of	Pollution and	Coral reef	Carbon and	Connectivity of
	communities within	sedimentation	degradation is	nutrient cycling;	ecosystems inc.
	an ecosystem	lead to species	considered in	lower	Larval dispersal.
	leading to functional	die-offs and	terms of major	trophodynamic	
	loss or change.	alteration of	change sto the	influences	
		current	productivity of	regarding	
		ecosystem	coral reef	bottom-up	
		function.	communities.	control.	
		Destruction of			
		land-based			
		habitats			
		negatively effect			
		ecosystem			
		buffering			
		functionality,			
		increasing			
		flooding.			
ecosystem services	Impacts on fisheries	Increased	Considers	Bottom-up	Connectivity
	(commercial and	pressures on the	impacts on all	control of	affects larval
	artisanal); Potential	coastal zone will	ecosystem	tisheries; carbon	recruitment for
	services loss through	negatively impact	services provided	and nutrient	fisheries; increases

Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
	Change on Global	(Versions 1.0			
	Biodiversity	and 2.0)			
	teh diassociation of	biodiversity and	by coral reefs.	cycling;	genetic diversity
	functioning	ecosystem		ecosystem	leading to
	ecosystem	function, thus		reactions to	increased
	communities.	generally		impacts and thus	redundancy and
		degarding teh		potential impact	higher ecosystem
		wide variety of		to ecosystem	resilience and
		ecosystem		services;	functioning.
		services provided		Regulation of	
		by coastal zone		marine bacteria	
		systems.		and viruses.	
economic value/human	Negatively impact	Polluted water	Negatively	Bottom-up	Understanding
well-being	fisheries economics,	has negative	impact economic	control of	sustainability of
	particularly the	impacts on	benefits of coral	fisheries; Marine	fisheries; general
	vulnerable coastal	human health,	reefs (fisheries,	bacteria and virus	understanding of
	communities that	potential for risks	medicinal	dynamics;	the sustaiability
	rely on small,	to food security if	products,	Influence of	and connectivity of
	artisanal fisheries	coastal system	curio/jewellry,	weather and	ecosystem
		functionality is	aquarium trade);	climate on	services.
		lost, increased or	Increase	marine	
		modified flood	vulnerability of	ecosystem	
		patterns can	coastal	services (e.g.	
		cause direct risks	communities and	Food security).	
		to coastal	habitats to natural		
		communities.	hazards; Reduce		
			food availability		
			impacted on		
			human health;		
			Negatively		
			impact livelihood		
			associated with		
			coral reefs;		
			negatively impact		
Model name	Impact of Climate	RamCo	Reefs at Risk	ERSEM II	ICTHYOP
------------	-------------------	---------------	---	----------	---------
	Change on Global	(Versions 1.0			
	Biodiversity	and 2.0)			
			spiritural, cultural, and aesthetic values associated with coral reefs.		

1.6.8 Regional models/asssessments

Model name	ATEAM	InVEST	Naidoo et al., 2008	Swallow et al., 2009	Patuxent landscape model (PLM) Costanza et al. 2002
natural drivers and environmental pressures	climate	not yet (possible: climate change)	none (mapping only)	None (mapping only)	Climate
human drivers and pressures	socioeconomic factors and land use	management practices, infrastructure, governance	none (mapping only, potentially: land use)	land use change	land use
policies	Via scenario inputs	governance, stakeholder- defined scenarios	examined: habitat conservation policies: synergies with ecosystem services	Via land use change	Via economics
land use	14 land use types, spatially explicit	spatially explicit	spatially explicit	spatially explicit	spatially explicit, land use types: water, forest, agricultural, rural

Model name	ATEAM	InVEST	Naidoo et al., 2008	Swallow et al., 2009	Patuxent landscape model (PLM) Costanza
					et al. 2002
					residential, urban
biodiversity	yes (species richness	yes (Species	yes (species	Not available	Not available
	and turnover of	richness (species	distribution for		
	plants, mammals,	area	mammals, birds,		
	birds, reptiles and	realtionship),	reptiles and		
	amphibians), shifts	habitat area and	amphibians)		
	in suitable habitats	quality)			
ecosystem function	Water and carbon	carbon and water	carbon and water	Not available	primary
	cycling, soil fertility	cycling	cycling		production, soil
· ·			1		nutrient cycling
ecosystem services	food and timber	water quality,	carbon	Food and water	water supply,
	and carbon	supply and	storage water	supply, elosion	(house prices)
	regulation soil	and food	subrage, water	control, water	(nouse prices)
	fertility recreation	nroduction	production	quanty	
	icitinity, iccreation	carbon stocks and	production		
		sequestration			
		recreation			
		species richness			
economic value/human	Not available	economic	Not available	Not available	aesthetic value
well-being		valuation of			(house prices)
		ecosystem			(
		services (per			
		hectare market			
		values)			

2 APPENDICES OF CHAPTER 3: OVERVIEW OF RESULTS FROM MODELS FOR THE LOSS OF BIODIVERSITY AND ECOSYSTEMS AND THEIR SERVICES

2.1 List of relevant projections and model results made in the assessment

Biodiversity / ecosystem	Aggeggment	Seconomics	Indicator	Madal	Details
service	Assessment	Scenarios	Indicator	Model	exammeu :
	OECD				
	Environmental		Mean Species	D () OD	
Terrestrial biodiversity	Outlook to 2030	1	Abundance	IMAGE	Yes
Terrestrial Biodiversity	GEO 4	4	Forest cover	IMAGE	Yes
Terrestrial biodiversity	MA	4	Forest cover	IMAGE 2.2	Yes
			Global loss of		
Terrestrial biodiversity	MA	4	vascular plant species	IMAGE 2.2	Yes
			Mean Species		
Terrestrial biodiversity	GEO 4	4	Abundance	GLOBIO	Yes
			Mean Species	IMAGE GLOBIO	
Terrestrial biodiversity	CBD 2006	7	Abundance	2	Yes
			Clabel less of		
			Vaccular plant species		
			through nitrogen		
Terrestrial Biodiversity	МА	4	deposition	IMAGE 2.2	No
renestitui Diourreisity			auposition	1.1.100 2.2	1.0
			Clabellers		
			GIODAI IOSS OF		
Terrestrial biodiversity	МА	1	through habitat loss	IMAGE 2.2	No
renestral biodiversity	11/1/1	4	unougn naonat 1055	INAGE 2.2	110
Food availability	IAASTD	1	kilocalories/day	IRPRI IMPACT	Yes

Biodiversity / ecosystem					Details
service	Assessment	Scenarios	Indicator	Model	examined?
Food availability	GEO 4	4	kilocalories/day	IMAGE	Yes
Food production	МА	4	Cereal yield	IMDACT	Vac
rood production	NIA.	4	(megatonnes/year)	IIVII AC I	105
Food production	IAASTD	2	Fish landings	ECO-OCEAN	Yes
Food production	IAASTD	1	cereal yield	IFPRI IMPACT	Yes
Marine biodiversity	MA	4	Biomass Diversity Index	Ecopath with Ecosim	Yes
Marine biodiversity	GEO 4	4	Change in total biomass of select fish groups	EwE	Yes
Marine biodiversity	Ecosystem based global fishing policy scenarios	4	MTI (Marine Trophic Index)	EcoOcean	Yes
Marine: Biomass Diversity Index	IAASTD	2	Biomass Diversity Index	EcoOcean	Yes
Terrestrial biodiversity	Ag Assessment	1	Mean Species Abundance	GLoBio3	Yes
Erosion control	МА	4	million km2	IMAGE 2.2	Yes
Erosion control	GEO 4	4	million km2	IMAGE	No
Food production	MEA	4	fish landings	Ecopath/Ecosim	No
Food production	GEO 4	4	cereal yield (tonnes/ha)	IMAGE	No

Biodiversity / ecosystem service	Assessment	Scenarios	Indicator	Model	Details examined?
Food production	GEO 4		Total landings from marine fisheries (billion tonnes)	EcoPath with EcoSim	No
Food production	Ecosystem based global fishing policy scenarios	4	Total landings from marine fisheries (billion tonnes)	EcoOcean	No

2.2 Projections of biodiversity and ecosystems services under different assessment scenarios.

All projections from 2000 to 2050 unless stated

		Biodiversity /			
	Scenario	ecosystem service	Model	Projections	Pressures and trends
	Baseline	Terrestrial Mean Species Abundance	IMAGE GLOBIO 3	Global losses of 7.5%. Sub-Saharan Africa, Europe show declines of greater than 11%.	Infrastructure, increasing climate change, agriculture, increasing climate change development and settlement also become increasingly important.
	Full trade liberalisation in agriculture	Terrestrial Mean Species Abundance	IMAGE GLOBIO 3	Global losses of 8.8%; 1.3% below the baseline.	Shift of agricultural production to Southern Africa and Latin America. Agricultural areas no longer required in developed countries potentially restored for biodiversity.
ook	Alleviation of extreme poverty in Sub-Saharan Africa	Terrestrial Mean Species Abundance	IMAGE GLOBIO 3	Global losses of 9.2%; 1.7% below the baseline. Reduces by 5.7% from the baseline in Sub- Saharan Africa.	Increased food consumption in Africa, produced predominately in the region. Potential long term benefits from reductions in demographic pressure and economic improvements.
ersity Outl	Climate Change mitigation policy	Terrestrial Mean Species Abundance	IMAGE GLOBIO 3	Global losses 8.5%; 1% below the baseline.	Biodiversity gain (+1%) from avoiding climate change and reduced nitrogen deposition. Loss (-2%) from additional land use for biofuels.
obal Biodiv	Sustainable wood production	Terrestrial Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 7.4%; +0.1% above the baseline.	Initial biodiversity loss through landuse. Later, reduced climate change and pressure on natural forests. Semi natural forests previously exploited left to recover.
CBD - Gl	Sustainable meat production	Terrestrial Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 7.2%. +0.3% above the baseline.	Increase in the cost of meat means lower demand and less area being needed for agriculture and lower nitrogen deposition.

-					
	Scenario	Biodiversity /	Model	Projections	Pressures and trends
	Doubling terrestrial biomes under	Terrestrial Mean	IMAGE	Global loss of 6.4%. +1.1% above baseline. Latin	Nitrogen deposition, fragmentation and climate change and increased pressure on adjacent land. Partly offset by
0	protection OECD baseline	Species Abundance Terrestrial: Mean	GLOBIO 3	America and Africa see smallest improvements. Global loss of 11%. Deterioration faster than 20th	reduced land conversion and greater connectivity.
ental Outlook to 203	scenario OECD policy package	Species Abundance Terrestrial: Mean Species Abundance	GLOBIO 3 IMAGE GLOBIO 3	century. Global loss of 11%. Deterioration faster than 20th century.	land. Infrastructure becomes an increasing source of pressure on MSA between now and 2050, from -6% to -11%. Climate change also becomes more significant. The expansion of crops and pasture accounts for the biggest loss of MSA.
Environme	OECD 450ppm	Terrestrial: Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 10%. Biggest improvement from baseline.	Infrastructure, climate change, woody fuel, crops. Partly offset by reduced impacts of climate change.
OECD	OECD global policy package	Terrestrial: Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 11%.Deterioration faster than 20th century.	Infrastructure, climate change, crops.
IAASTD	Baseline	Terrestrial: Mean Species Abundance	GLoBio3	Global loss of 10%. The rate of loss is faster than between 1970 - 2000.	Infrastructure, climate change and agricultural expansion.
GEO 4	Markets first	Terrestrial: Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 12%. 16% and 15% loss in Africa and Latin American & the Caribbean respectively.	Infrastructure to access natural resources, climate change. Agriculture exerts negative pressure in Africa and Latin America & the Caribbean. Positive impact elsewhere.

	Scenario	Biodiversity / ecosystem service	Model	Projections	Pressures and trends
	Policy first	Terrestrial: Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 7%. 10% and 8% loss in Africa and Latin American & the Caribbean respectively.	Climate change, agriculture expansion. Protected areas protect some of the most endangered species.
	Security first	Terrestrial: Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 10%. 16% and 12% loss in Africa and Latin American & the Caribbean respectively.	Infrastructure and climate change, exacerbated by large population growth and increased conflict.
	Sustainability first	Terrestrial: Mean Species Abundance	IMAGE GLOBIO 3	Global loss of 7.5%. 10.5% and 9% loss in Africa and Latin American & the Caribbean respectively.	Climate change and expanded demand of agricultural land for biofuels. Protected areas protect some of the most endangered species.
	Markets first	Forest cover	IMAGE GLOBIO 3	Global forest cover projected to reduce from circa 45 million km ² in the year 2000 to circa 40 million km ² by 2050. N. America and Europe projected to see a slight growth in forest cover whereas Africa, Latin America and the Caribbean are all projected to have a decrease.	Loss of forest cover is not as pronounced as under the Policy First and Sustainability First scenarios since the increasing demand for land is partly compensated by developments in technology under this scenario.
	Policy first	Forest cover	IMAGE GLOBIO 3	Global forest cover projected to reduce from circa 45 million km^2 in the year 2000 to circa 35 million km^2 by 2050. Africa is projected to lose nearly the entirety of its forest cover.	Population growth, strong targets for mitigating the effects of GHG emissions under this scenario leads to added pressure to increase the area of land used for biofuel crop production.
	Security first	Forest cover	IMAGE GLOBIO 3	Global forest cover projected to reduce to circa 42 million km ² by 2050 (from 45 million km ² in 2000). From 2030, an increase in forest cover is projected in Asia and the Pacific, Europe and N. America. In Latin America and the Caribbean forest cover is projected to stabilise at circa 8 million km ² between 2020 and 2050.	Under this scenario, low economic growth means agricultural land expansion is smallest out of all the scenarios. In Latin America and the Caribbean where forest is a key natural resource, key forest areas are kept well protected due to the interests of the elite in this region.
GEO 4	Sustainability first	Forest cover	IMAGE GLOBIO 3	Global forest cover projected to decrease by circa 7 million km^2 (from the year 2000) to circa 38 million km^2 in 2050. Slight increase in forest cover in Latin America and the Caribbean projected between 2030 and 2050.	Strong targets for mitigating the effects of GHG emissions under this scenario, added pressure to increase the area of land used for biofuel crop production. Improvements in technology made under this scenario counterbalanced by an increased concern for food availability. In Latin America and the Caribbean,

	Scenario	Biodiversity / ecosystem service	Model	Projections	Pressures and trends mechanisms put in place in order to rehabilitate affected forest ecosystems.
	Global Orchestration	Forest cover	IMAGE 2.2	Rate of loss of "original forest"* unchanged. Cover increases in Industrial regions and declines in Developing regions	Rapid income growth and preference for meat. Partly offset by increased crop yields due to technological innovation. Circa 50% of Sub-Saharan forest disappears.
	Order from Strength	Forest cover	IMAGE 2.2	Rate of loss of "original forest"* globally increases from 0.4% to 0.6%. Significant reductions in Developing regions.	Increasing population and slow improvements in crop yield in low-income countries. Two thirds of Central African forest in 1995 gone.
	Adapting Mosaic	Forest cover	IMAGE 2.2	Rate of loss of "original forest"* unchanged. Cover increases in Industrial regions and declines in Developing regions	Locally successful experiments mitigate expansion of agricultural land after 2040. Lowest deforestation rates in Africa but virtual depletion of forest areas in South Asia by 2100 due to low crop yields.
МА	Techno Garden	Forest cover	IMAGE 2.2	Net increase in forest cover. Rate of loss of "original forest"* slightly below current rate. Significant depletion in Africa and Southeast Asia.	Assumed lower meat consumption reducing pastureland. Partly offset by increase in crops and land for biofuels to combat climate change.
	Global Orchestration	Global loss of vascular plant species	IMAGE 2.2	16.5% loss between 1970 and 2050.	Climate change main driver on savanna and cool conifers. Agricultural expansion, particularly in temperate, tropical and warm mixed forests. N deposition important driver on temperate deciduous forest.
	Order from Strength	Global loss of vascular plant species	IMAGE 2.2	18.5% loss between 1970 and 2050.	Climate change, agricultural expansion, N deposition. Expanding population and slow crop yields main driver.
MA	Adapting Mosaic	Global loss of vascular plant species	IMAGE 2.2	15% loss between 1970 and 2050.	Climate change, agricultural expansion. Slower development rates in developing countries slowing the increases in food demand.

			Biodiversity /			
		Scenario	ecosystem service	Model	Projections	Pressures and trends
		Techno Garden	Global loss of vascular plant species	IMAGE 2.2	13.5% loss between 1970 and 2050.	Agricultural expansion, climate change. Higher yields and stabilising population reduce land expansion impact.
		Markets first	Food availability (kilocalories/day)	IMAGE GLOBIO 3	Large increases in all regions. Consistent gaps between rich and poor.	Increased demand, greater investments in technology.
		Policy first	Food availability (kilocalories/day)	IMAGE GLOBIO 3	Large increases in all regions. Consistent gaps between rich and poor.	Increased demand, greater investments in technology, environmental stewardship.
		Security first	Food availability (kilocalories/day)	IMAGE GLOBIO 3	Food production barely keeps up with population increase after 2020 and there is a small decline after 2040.	Growing population, lack of investment in technology.
	GEO 4	Sustainability first	Food availability (kilocalories/day)	IMAGE GLOBIO 3	Largest increases in all regions. Significant reduction in gap between rich and poor countries.	Lower overall population growth, reduced land degradation, regional integration.
		Reference scenario	Food availability (kilocalories/day)	IFPRI IMPACT	Slow improvement. Lowest in Sub-Saharan Africa and South Asia at circa 2, 7400 compared to over 3,000 elsewhere. Child malnutrition grows 11% in Sub-Saharan Africa.	Increasing food prices, inability of poor countries to increase production to match population growth.
	IAASTD	Reference scenario	Food production (cereal yield)	IFPRI IMPACT	Grows at a slower annual rate than 1980-2000 of 1.96% to 1.02%. Latin America and Caribbean and Sub-Saharan Africa grow 1.61% and 1.68% respectively.	Moderate technological investment. Slowed by increasing water scarcity, drought from climate change.
	MA	Global Orchestration	Food production (cereal vield)	ІМРАСТ	World output increases 72% , almost four-fold in Sub-Saharan Africa.	Large investments in agricultural research and supporting infrastructure. Land under irrigation increases rapidly.

		Biodiversity /			
	Scenario	ecosystem service	Model	Projections	Pressures and trends
	Order from Strength	Food production (cereal yield)	IMPACT	World output increases 55%.	Significant crop area expansion as investments insufficient to match demand. Subsidies and barriers increase cost of procuring food, particularly for the poor.
	Adapting Mosaic	Food production (cereal yield)	IMPACT	World output increases 53%.	Food produced locally on expanded crop areas insufficient for demand. Results in pressures on food prices and increase in demand for imports.
	Techno Garden	Food production (cereal yield)	ІМРАСТ	World output increases 57%.	Substantial improvements in crop yields and lower meat consumption diet reducing demand for crop area expansion. Medium population growth.
	Markets first	Change in total biomass of select fish groups	Ecopath with Ecosim	Large demersals decrease by circa 6% and large pelagics decrease by circa 14%.	Increase in global income and improved technology. Increased fishing effort.
	Policy first	Change in total biomass of select fish groups	Ecopath with Ecosim	Large demersals increase to circa 8% while large pelagics decrease by circa 7%.	Increased fishing effort.
	Security first	Change in total biomass of select fish groups	Ecopath with Ecosim	Large demersals increase by circa 4% while large pelagics decrease by circa 11%.	Large projected population
GEO 4	Sustainability first	Change in total biomass of select fish groups	Ecopath with Ecosim	Large demersals increase to 30% while large pelagics decrease by circa 8%.	Attempt to fish lower on the food chain, shifting diets and smaller increases in population.
MA	Global Orchestration	Marine: Biomass Diversity Index	Ecopath with Ecosim	Gulf of Thailand responds well to ecosystem rebuilding, but drops dramatically when focus changes to provide fishmeal for aquaculture. Bay of Benguella responds to ecosystem recovery after 2030. Central North Pacific is not much affected.	Decline in fisheries addressed once economic importance becomes apparent. High global coordination a positive.

		Biodiversity /			
	Scenario	ecosystem service	Model	Projections	Pressures and trends
	Order from Strength	Marine: Biomass Diversity Index	Ecopath with Ecosim	Risk of fisheries collapse high worldwide. Gulf of Thailand decreases consistently. Bay of Benguella initially does well as focus on jobs results in ecosystem management. Central North Pacific loses biomass diversity.	Unchecked exploitation and lack of co-ordination.
	Adapting Mosaic	Marine: Biomass Diversity Index	Ecopath with Ecosim	Gulf of Thailand decreases consistently. Bay of Benguella increased due to management policy to maintain jobs. Central North Pacific increases slightly in response to protection but decreases in 2030 when focus returns to high-value fisheries.	Informed local management does well but is hampered by lack of co-ordination at the global level.
	Techno Garden	Marine: Biomass Diversity Index	Ecopath with	Gulf of Thailand responds very well to ecosystem rebuilding, but drops dramatically when focus changes to provide fishmeal for aquaculture. Bay of Benguella drops initially but increases after 2030 when managed to provide fishmeal due to the favourable mix of species present. Central North Pacific decreases as technology improves catch rate. Not affected by development of aquaculture	Decline in fisheries is addressed through environmental technologies and rapid development of aquaculture
em based global fishing policy scenarios	Markets first	MTI (Marine Trophic Index)	EcoOcean	General decrease in Marine Trophic Index in all oceans studied. Increased landings usually at lower trophic levels.	As most large bodied demersal fish already overexploited in 2003, landings were increased by augmenting secondary demersal fish groups and invertebrates (e.g. lobster, crab, shrimp).
Ecosyste	Policy first	MTI (Marine Trophic Index)	EcoOcean	General decrease in Marine Trophic Index in all oceans studied. Increased landings usually at lower trophic levels.	As most large bodied demersal fish already overexploited in 2003, landings were increased by augmenting secondary demersal fish groups and invertebrates (e.g. lobster, crab, shrimp).

-						
		<i>a</i> .	Biodiversity /			
		Scenario	ecosystem service	Model	Projections	Pressures and trends
		Security first	MTI (Marine Trophic Index)	EcoOcean	General decrease in Marine Trophic Index in all oceans studied. Increased landings usually at lower trophic levels.	As most large bodied demersal fish already overexploited in 2003, landings were increased by augmenting secondary demersal fish groups and invertebrates (e.g. lobster, crab, shrimp).
		Sustainability first	MTI (Marine Trophic Index)	EcoOcean	Least increase in landings. Slightly higher MTI in most oceans studied than the other scenarios but a general decrease still projected in all oceans studied. Increased landings usually at lower trophic levels. In some areas under this scenario a decreased demersal fleet effort is projected.	As most large bodied demersal fish already overexploited in 2003, landings were increased by augmenting secondary demersal fish groups and invertebrates (e.g. lobster, crab, shrimp).
		Markets first	Marine Trophic Index of catch	Ecopath with Ecosim	General decrease in MTI	Increased fishing effort and improved technology
		Policy first	Marine Trophic Index of catch	Ecopath with Ecosim	General decrease in MTI	
		Security first	Marine Trophic Index of catch	Ecopath with Ecosim	General decrease in MTI. Highest MTI of catch as effort is maintained on more valuable species.	Lower catches but efforts maintain on higher value fish.
	GEO-4	Sustainability first	Marine Trophic Index of catch	Ecopath with Ecosim	Biggest decrease in MTI	Attempt to fish lower on the food chain to maintain marine ecosystems. Lower overall catch increases due to smaller population increases and changing diets.
	IAASTD	Reference Scenario	Marine Trophic Index of catch	EcoOcean	Atlantic Ocean: decreased trophic level of catches by 2-2.5%. Pacific Ocean: Unchanged. Indian Ocean: Unchanged. Mediterranean: 3% decline. All between 2003-2048.	Value of landings optimised with fishing effort as the driver, until 2010, after which only small pelagic fleet allowed to change.

	Scenario	Biodiversity / ecosystem service	Model	Projections	Pressures and trends
	Increase in small pelagic fleet	Marine Trophic Index of catch	EcoOcean	Atlantic Ocean: decreased trophic level of catches of 2-2.5%. Pacific Ocean: declines 1.3%. Indian Ocean: Consistent decline. Mediterranean: consistent decline. All between 2003-2048.	2% increase in pelagic fishing effort per year after 2010. Sustainability of Indian Ocean & Mediterranean uncertain due to constant fall in trophic level. Atlantic observes declines in large demersal and bentho-pelagic fish.
	Reference Scenario	Food Production (fish landings)	EcoOcean	Atlantic Ocean: decrease 5.4%. Pacific Ocean: declines 5%. Indian Ocean: initial decline, eventual 1% increase. Mediterranean: 7% increase. All between 2003-2048.	Value of landings optimised with fishing effort as the driver, until 2010, after which only small pelagic fleet allowed to change.
	Increase in small pelagic fleet	Food Production (fish landings)	EcoOcean	Atlantic Ocean: increase 7%. Pacific Ocean: large increase. Indian Ocean: less than 5% increase. Mediterranean: 50% increase, then level. All between 2003-2048.	2% increase in pelagic fishing effort per year after 2010. Increases in small pelagic.
	Global Orchestration	Water induced Soil Erosion	IMAGE 2.2	Significant increasing pressure, global area of soil with high water erosion risk increases from circa 22 Mkm ² in 2000 to circa 28 Mkm ² in 2050.	Large pressure as a result of precipitation increase, and to a lesser extent from land use change.
	Order from Strength	Water induced Soil Erosion	IMAGE 2.2	Significant increasing pressure, most of all the scenarios. Approximately 50% increase in the global area of soil with high water erosion risk by 2100 (from circa 22 Mkm ² in 2000 to 32 Mkm ² in 2050 and 40 Mkm ² in 2100).	Large pressure as a result of land use change to a lesser extent from increased precipitation and agricultural practices.
	Adapting Mosaic	Water induced Soil Erosion	IMAGE 2.2	Significant increasing pressure, global area of soil with high water erosion risk increases from circa 22 Mkm ² in 2000 to circa 28 Mkm ² in 2050.	Pressure due to increased precipitation and land use. Agricultural practices have a positive impact owing to localised objectives to prevent soil erosion which slows the degradation of active agricultural land and significantly restores previously degraded land.
MA	Techno-Garden	Water induced Soil Erosion	IMAGE 2.2	Significant increasing pressure but less than other scenarios. Global area of soil with high water erosion risk increases from circa 22 Mkm ² in 2000 to circa 28 Mkm ² in 2050 and increases to circa 31 Mkm ² by 2100 (lowest of all scenarios).	Pressure due to increased precipitation and land use. Agricultural practices have a positive impact since they are more ecologically proactive.

NOTES

All projections from 2000 to 2050 unless stated * "Original forests" here means forests that were present in 1970 and have not changed their attributes through agricultural expansion, timber production or climate change. Historic rate refers to rate between 1970 - 2000 rate.

		Population	Overall GDP Increase	Energy Use	Agricultural production & consumption	Primary Goals	Environmental protection	Trade	Technology development
	OECD Baseline	9.1 bn in 2050 (40% increase); 8.2 bn in 2030 (27% increase)	Annual global GDP increase of 2.8%. Overall world GDP increases 87%; India and China increase over 300%. (2005 - 2030)	280 EJ to 470 between 2000 and 2030.	Consumption increases 50% globally by 2030; 70% in developing countries. stable in OECD countries.	Not defined	Both reactive and proactive	Weak globalisation	Average
Business as usual	IAASTD Baseline	8.2 bn in 2050	Developed regions will see relatively low and stable to declining growth rates between 1 and 4% per year out to 2050. East and SE Asia growth rate of between 4-7% per year to 2050. LAC region 3.5- 4.5% growth per year to 2050	280 EJ (year 2000) increases to 500 EJ by 2030 and to over 700 EJ in 2050. Biggest rises in developing countries; but higher energy consumption per capita in developed countries.	Number of malnourished children will decline from150 million (2000) to 130 million in 2025 and to 100 million in 2050. Total area of agricultural land worldwide increased by 10% in 2050.	Not defined	Both reactive and proactive	Current trade conditions continue to 2050 – no trade liberalisation or reduction in sectoral protection.	
Convent ional	GEO 4 Markets First	9.2 bn by 2050	Approximately 500% increase in global GDP by 2050.	Increases from 400 EJ in 2000 to over 1000EJ		Maximum economic growth	Reactive	Significant increase in global trade (from	Rapid

2.3 The most important assumptions and examples of different categories of scenarios used in the assessments

		Population	Overall GDP Increase	Energy Use	Agricultural production & consumption	Primary Goals	Environmental protection	Trade	Technology development	
				in 2050				approx 10 trillion US\$ in 2000 to approx 75 trillion US\$ in 2050)		
	MA_Global	7.2 bn by	Annual growth	Increases		Globally	Reactive	Trade	Rapid	Deleted: MEA
	Orchestration	2020 increasing to 8.1 bn in 2050. Population projected to be 6.8 bn in 2100.	rates of GDP per capita (% per year) is 3% between 2020 and 2050 and 2.3% between 2050 and 2100.	from 400 EJ in 2000 to 1200 EJ by 2050		connected society with a focus on global trade and economic liberalisation		liberalisation		
Reformed Markets	GEO 4 Policy First	8.6 bn by 2050	Approximately 500% increase in global GDP by 2050	400 EJ in 2000 to 600- 700 EJ in 2030 and around 800- 900 EJ in 2050		Centralised approach in order to balance strong economic growth with reduced potential environmental and social impacts	Both reactive and proactive	Increase in global trade (from approx 10 trillion US\$ in 2000 to approx 60 trillion US\$ in 2050)	Rapid	
Competition Between	GEO 4 Security First	9.7 bn by 2050	Nearly 300% increase in global GDP by 2050	400 EJ in 2000 to 600- 700 EJ in 2030 and around 800- 900 EJ in		Security	Reactive	Trade increases from approx 10 trillion US\$ in 2000 to 20 trillion	Slow	

	Population	Overall GDP Increase	Energy Use	Agricultural production &	Primary Goals	Environmental protection	Trade	Technology development	
MA Only	2.7 hz ba	Annulanath	2050		Constraint	Desetion	US\$ in 2050, the smallest increase of all four GEO4 scenarios	Quandl	
from Strength	2020 increasing to 9.5 bn in 2050, reaching 10.5 bn in 2100.	rates of GDP per capita (% per year) is 1.0% between 2020 and 2050 and 1.3% between 2050 and 2100.	2000 to 800 EJ in 2050		protection, emphasis on regional markets	Reactive	barriers, regional markets	technological development is low (medium in industrial countries)	- J Deleted: MEA

3 APPENDICES FOR CHAPTER 4: ASSESSMENT OF IMPACT OF KEY ASSUMPTIONS

3.1 Terrestrial Models

(Score # indicates number of criteria (columns) for which the model does not provide information)

Model name	Ecosystem Ser	vice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in assessments	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services				u 55 U 55 U 1 U 1	
Integrated models	assessment								
GUMBO	Harvested organic matter, water supply, mined ores, and extracted fossil fuel	Soil formation (decompositio n), nutrient (N) cycling	recreation, cultural (positively related to total biomass and density of social network, negatively related to human population size)	gas regualtion (C flux), climate regulation (temperature), waste assimilation, disturbance regulation (variation in total biomass)	x	valuation: marginal product of ecosystem services in both the model's production and welfare functions	global, 11 biomes globally aggregated, not spatially explicit	x	2
IMAGE	Agricultural production, including grass/fodder production and livestock/milk production, demand for wood products, timber, fuelwood	Soil fertility	x	Carbon flux, carbon plantations, ocean carbon model, water- erosion sensitivity, air pollution, soil moisture	MSA through link with GLOBIO	x	Global (with details for 24 world regions (energy, trade emissions) or or 0.5° x 0.5° grid (land cover, land use)	SRES, MA, GEO, OECD, IAASTD, EURURALI S	2

Model name	Ecosystem Ser	vice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services				assessments	
MIMES	Food production, production of raw materials	Soil formation, nutrient cycling	recreation, cultural	climate regulation, waste assimilation , disturbance regulation	x	valuation: marginal product of ecosystem services in both the model's production and welfare functions	global, 1° by 1° resolution	x	2
AIM	Water supply, food and timber production	x	x	greenhouse gas emissions, air pollution, carbon sequestration, human health (malaria distribution), flood damage	Vegetation distribution	x	Focused on Asian- Pacific region, but linked to a global model representing 9 regions; 5° x 5°	SRES	3
IGSM	Agricultural production (can be separated into crops, livestock and forestry)	SOC	x	human health impacts, sea level, air pollution, carbon emissions and stocks	X	GDP growth	global, 16 regions with special studies on European countries, 0.5° to 4°by5° grid, depending on submodel for the biogeochemical part	x	3
IIASA	timber production, agricultural food production,	x	x	carbon sequestration	x	x	global, 0.5° grid	SRES	4

Model name	Ecosystem Ser	rvice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in assessments	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services					
	renewable water resources								
Ifs	Agricultural production, including marine fishing and aquaculture	x	x	Human health, CO2 emissions	x	x	Global (with details for 182 regions/countries), not spatially explicit	x	5
Scenario b	uilding tools								
PoleStar	water resources, raw materials and agriculture	X	X	solid waste management, environmental loadings	X	income distribution and poverty	X	SRES	4
Threshol d 21	agriculture, consumption of natural resources (renewable and nonrenewable) , resource depletion (e.g. forests)	land degradation	x	soil erosion, greenhouse gas emissions, air and water quality (pollution)	x	x	focussed on the national level, globally applicable	x	4
Economic	models								
ENV- Linkages	timber production, agricultural production (crops and	x	x	x	x	x	Global, aggregated in 34 countries/regions	x	6

Model name	Ecosystem Ser	rvice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in assessments	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services					
	livestock, intensive and extensive production)								
GTAP	agricultural food production	x	x	x	x	x	Country level, not spatially explicit	Used in combination with IMAGE in a number of assessments	5
Land-use n	nodels								
CLUE	None (but land used for agriculture, grazing, forestry)	x	x	x	Land cover diversity explicit	x	Europe (EU-27), also case studies in a.o. Costa Rica, Ecuador, Honduras, the Netherlands, China, Java, Phillippines, Malaysia, Vietnam, Kenya, USA, 1x1km, case studies between 30m and 32km	EURURALI S	4
Biogeocher	nical models								
IBIS	water runoff	NPP, SOC, N balance	x	carbon balance, water regulation	Vegetation composition (functional types)	x	0.5 - 4°	X	3

Model name	Ecosystem Ser	vice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in assessments	Sco re
	Provisioning	Supporting	Cultural	Regulating					
	services	services	services	services					
LPJmL	runoff volumes, crop production	annual NPP	x	CO2 exchange, water balance	vegetation cover (fraction of different plant functional types per grid cell); Vegetation composition	x	global, 0.5° grid cells	x	3
SAVAN A	livestock production, grass and timber production, water supply (runoff, deep drainage)	NPP, nutrient cycling	x	water balance	Species distribution and abundance (plants + animals); community composition	x	regional, resolution depending on input data and studied ecosystem	x	3
Agro- IBIS	water supply, crop production	NPP, SOC, N balance	X	carbon flux, N leaching, water regulation	Vegetation composition (functional types)	X	currently only run for North America, global application planned, 0.5° grid	X	3
PICUS	timber production	nitrogen cycling in forests	x	carbon sequestration, soil moisture (water cycling)	forest species composition (diversity, naturalness indicators)	x	temperate forests, Europe, 100m ² patches	x	3
CENTUR Y	grass, tree and crop production, water supply (stream	N, P and S balance, SOC	x	Water balance, decomposition , CO2 flux, erosion	x	x	any resolution (depending on input?)	x	4

Model name	Ecosystem Ser	rvice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in assessments	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services					
	discharge)								
IMPACT -WATER	Agricultural food production (crops and livestock)	x	x	x	x	x	global: 115 regions and countries, intersected with 126 river basins (281 spatial units), uncluding EU-15 and eastern Europe	x	6
Hydrologic	cal models								
(E)- SWAT	water supply	Х	Х	erosion control	х	Х	calculations are done on the scale of sub- watersheds	х	5
WaterGA P	water supply	x	x	x	x	x	global, country, river basin, grid cells 0.5° by 0.5°	OECD, GEO, MA, in combination with IMAGE, IMPACT, EcoSim and AIM	5
WBM (+)	water supply, livestock production	X	X	soil water content	х	Х	0.5° by 0.5° grid (30'grid)	х	5
Biodiversit	y models								

Model	Ecosystem Ser	rvice Provision			Biodiversity	Economic	Scale of Output	Earlier	Sco
name						Value of		applications	re
						Output		in	
	Provisioning	Supporting	Cultural	Regulating				assessments	
	services	services	services	services					
GLOBIO	FROM link with IMAGE: Agricultural production, including grass/fodder production and livestock/milk production, demand for wood products, timber, fuelwood	FROM link with IMAGE: Soil fertility	X	FROM link with IMAGE: Carbon flux, carbon plantations, ocean carbon model, water- erosion sensitivity, air pollution, soil moisture	mean species abundance (MSA)	X	global, (0.5° by 0.5° for climatic data, 1km by 1km for land use data)	OECD, GBO	2
BII	x	X	X	x	biodiversity intactness index	x	global, scale of aggregation: 104 to 106 km2	x	6
EUROM OVE	х	Х	х	Х	number of species	х	Europe, 2500km2 grid cells	х	6
MIRABE L	X	X	X	х	habitats at risk Not available	х	28Europeancountries,13ecological regions	X	6
SAR	x	x	x	x	number of species; Vegetation composition/ species distribution	x	global, calculated for different biogeographical units (biomes, ecoregions), not spatially explicit	x	6
GARP	X	X	x	x	Vegetation composition/ species distribution	x	x	x	7

Model name	Ecosystem Ser	rvice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services		Output		assessments	
Regional m	odels / Assessmen	nts							
ATEAM	food production, wood production, energy production, water supply	soil fertility maintenance (soil organic carbon), pollination	recreation, sense of place, beauty	carbon storage (LPJ model), drought and flood prevention, water quality	statistical niche modelling	x	Europe 15 + Norway and Switzerland, 10' by 10' grid	x	2
InVEST	drinking water, irrigation water, food production, timber production, non-timber forest products	pollination (contribution to yield)	recreation and tourism, cultural and aethetic values, real estate prices as indicator of valuation of nature	flood mitigation, carbon sequestration, erosion control, water quality	species richness (feeding and breeding habitat regquirement s of 37 terrestrial vertebrate species, dispersal ability)	x	regional, resolution flexible; case study: Willamette Basin, Oregon, USA (30 m x 30 m grid, for results: 500 ha units)	x	2
PLM, Costanza et al 2002	water supply, primary production of natural vegetation, plantations, grasslands, agriculture	soil nutrients	land prices based on surroundings	water quality	x	X	Patuxent River watershed, Maryland, USA; variable resolution, maximum resolution: 200 by 200m	X	3
Naidoo et al 2008	grassland production of livestock,	х	X	carbon sequestration and carbon	mammal, bird, reptile, and	X	global, maximum resolution 0.5°	x	4

Model name	Ecosystem Ser	rvice Provision			Biodiversity	Economic Value of Output	Scale of Output	Earlier applications in assessments	Sco re
	Provisioning services	Supporting services	Cultural services	Regulating services					
	water supply			storage	amphibian species distribution				
Swallow et al, 2009	food production, (water supply)	x	x	erosion control, (flood mitigation, water quality)	x	x	Lake Victory basin; multiple spatial scales, smallest: 5km by 2.5km (arial photograph), sub- basin, country division, river basin	x	5

3.2 Marine Models

(Score # indicates number of criteria (columns) for which the model does not provide information)

Model name	Ecosystem Service Provision				Economic Value of Output	c Value Scale of Output it	Earlier application in assessments	Score
	Provisioning services	Regulating services	Supporting services	Cultural services				
ASSETS	Estuarine fisheries/aquacu lture; water quality	Not applicable	Primary production, nutrient cycling	Recreation	Negatively impact fisheries/aquacult ure; revenue from recreation; Toxic algal blooms can be harmful to human health.	Estuarine/Watershed level. Currently, there are 157 assessed estuarine systems in ASSETS primarily based in the U.S. But there are a number of international records. Resolution of output is based the the bathymetry grid used, however the details are not specified in the peer- reviewed methodology.	Not applicable	2
Aus-Connie	Larval recruitment to fisheries	Ecosystem connectivity (inc. genetic and nutrient flows), larval dispersal and recruitment	Nutrient cycling	Not applicable	Understanding sustainability of fisheries, dispersal of contaminants possibly harmful to marine resources and humans thus reducing ecosystem services, general understanding of the sustainability and connectivity of ecosystem services.	Australia; 0.5 degree geographical grid; All statistics were based on currents and trajectories computed at a fixed depth of Z = 20m, which was taken to be representative of surface waters where larval concentrations tend to be highest.	Not applicable	2

Model name	Ecosystem Servi	ce Provision			Economic Value of Output	Scale of Output	Earlier application in	Score
	Description of the second		G	Carltana			assessments	
	Provisioning	services	Supporting	cultural				
Cumulative Threat Model for the global ocean	Impacts on fisheries/aquacu Iture; abiility of ecosystems to provide non- living resources.	Impact ability of ecosystem to provide regulating services generally.	Reduction in nutrient cycling ability (e.g. through dead zones/pollutio n); Impacts on habitats and their services.	Impacts on recreation, aesthetic values and experience, spiritual enrichment etc.	Model implies that areas that are more highly impacted will not be able to provide the quality and range of ecosystem services as less impacted areas.Reduced goods and services will have a general negative impact on human health.	Global but can be applied at the local- and regional-scale; 1km2 resolution grid.	Not applicable	1
EwE, EcoSpace & EcoVal	Fisheries (inc. their ecosystem effects).	Biomass and fluxes	Population dynamics (Top-down vs. Bottom-up controls)	Economic valuation of resources (Ecoval).	Bioaccumulation effects; food security; economic value of ecosystem goods and services under different management scenarios;	Multi-scale, ecosystem models. Ecospace is the only component that provides spatial representation and uses user-defined grid cells.	Millennium Ecosystem Assessment scenarios and the GEO-3 and -4 projections.	0

Model name	Ecosystem Servi	system Service Provision			Economic Value of Output	Scale of Output	Earlier application in	Score
	Provisioning services	Regulating services	Supporting services	Cultural services			assessments	
GEEM	Fisheries (inc. their ecosystem effects).	Biomass and fluxes	Population dynamics (trophic controls); biological maintenance of resilience; changes to ecosystem community structure may impact on other ecosystem services;	Not applicable	Negatively impact fisheries; possible threats to food security; negative impacts on livelihoods if ecosystem functionaility/ser vices are lost potentially impacting vulnerable coastal communities.	Multi-scale, ecosystem model based around food webs. Resolution measures are not applicable as spatial representation of outputs is not available.	Not applicable	3
Impact of Climate Change on Global Biodiversity	Fisheries (commercial and artisanal).	Not applicable	Changes to ecosystem community structure may impact on other ecosystem services.	Artisanal fishing practices	Negatively impact fisheries economics, particularly the vulnerable coastal communities that rely on small, artisanal fisheries	Global; 30' X 30' grid cell size. Can be scaled to local and regional levels.	Not applicable	3

Model	Ecosystem Servi	ce Provision			Economic Value	Scale of Output	Earlier application in	Score
name					or Output		assessments	
	Provisioning services	Regulating services	Supporting services	Cultural services				
RamCo	Food security of coastal systems; Water provisioning/wa ter quality; commercial products provided by coastal zones.	Ability of coastal zone to provide regulating services generally.	Supporting services related to coastal zones generally, e.g. Primary production, nutrient cycling, maintenance of habitats, population dynamics etc.	Ability of coastal zone to provide cultural and spiritual services generally.	Polluted water has negative impacts on human health, potential for risks to food security if coastal system functionality is lost, increased or modified flood patterns can cause direct risks to coastal communities.	RAMCO can handle cellular models with dimensions up to 500 by 500 cells. Useful on grids which resolution varies from 50 to 500 meters. RamCo can to deal with spatial dynamics at different levels & will generally have two coupled components: one for macro-level, long range and large scale processes operating on the micro-level, short range and micro-scale. Sub-models will in general operate at one level, but may exchange information with sub-models at the other level.	Not applicable	3

Model		Ecosystem Se	rvice Provision			Economic Value	Scale of Output	Earlier	Score
name						or Output		assessments	
		Provisioning	Regulating	Supporting	Cultural				
		services	services	services	services				
Reefs	at	Coral re	ef Nitrogen	Mantainence	Recreational	Negatively	Global coral reefs; 4km	Not applicable	1
Risk		fisheries; Ra	w fixation; CO2/Ca	of habitats;	Value;	impact economic	resolution		
		materials 1	to budget control;	maintenance	ecotourism;	benefits of coral			
		medicines;	Waste	of biodiversity	sustaining	reefs (fisheries,			
		Other ra	w assimilation.	and genetic	livelihoods of	medicinal			
		materials		library;	local	products,			
		(seaweed a	id	biological	communities;	curio/jewellry,			
		algae for ag	r,	maintenance	aesthetic	aquarium trade);			
		manure etc);	of resilience;	value; support	Increase			
		iouvolleur Li	ia ia	hotwoon	of cultural,	vulnerability of			
		fish and co		Detween accevetame:	religious allu	coastal			
		applicated of	al	ecosystems,	volues	babitate to natural			
		aquarium trad		organic	values.	hazards. Reduce			
		aquarium trau	•	production		food availability			
				between		impacted on			
				ecosystems:		human health:			
				protection of		Negatively			
				adjacent		impact livelihood			
				shorelines - in		associated with			
				doing so		coral reefs;			
				supporting		negatively impact			
				wetlands,		spiritural,			
				seagrass beds,		cultural, and			
				mangrove		aesthetic values			
				fisheries,		associated with			
				population		coral reefs.			
				centres etc.;					
				generation of					
				coral sand;					
				build up of					
				land.	1				

Model name	Ecosystem Servi	osystem Service Provision			Economic Value of Output	Scale of Output	Earlier application in	Score
	Provisioning services	Regulating services	Supporting services	Cultural services			assessments	
ERSEM II	Fisheries (understanding environmental drivers and bottom-up processes impacting fish populations; impacts of fisheries).	Ecological fluxes; nutrient limitations.	Lower trophic level habitat modelling for pelagic and benthic systems;	Not applicable	Bottom-up control of fisheries; Marine bacteria and virus dynamics; Influence of weather and climate on marine ecosystem services (e.g. Food security).	Dependent on resolution of the model that it is coupled to. ERSEM's upper boxes extend from the surface to 30 m, the lower boxes from 30 m to the bottom. coupled to high resolution hydrodynamic models, large geographical scales. Basin scale and open ocean applications in 1, 2 and 3 dimensions	Not applicable	3

Model name	Ecosystem Servi	ce Provision			Economic Value of Output	Scale of Output	Earlier application in	Score
	Provisioning services	Regulating services	Supporting services	Cultural services			assessments	
ІСТНУОР	Larval recruitment to fisheries	Ecosystem connectivity (inc. genetic and nutrient flows), larval dispersal and recruitment	Bottom-up support of food webs.	Not applicable	Understanding sustainability of fisheries; general understanding of the sustaiability and connectivity of ecosystem services.	The environmental state variables are provided on a discrete three-dimensional grid by archived simulations of the ROMS or MARS oceanic models. The Icthyop model sees the Eulerian velocity field at the same spatial scale as the Eulerian primitive equation models. Subgridscale parameterisations can be added in the IBM to address scales unresolved by the primitive equation models. The fields of salinity, current velocities, and temperature are interpolated in space to provide values at any individual location in Icthyop.	Not applicable	2

4 APPENDICES TO CHAPTER 5: WORKSHOP

4.1 Workshop Programe

Wedneso	lay, 13 May 2009 – Where we are and where we want to go
10:00	Opening and Introduction: What this study aims to do? <i>Robin Miège</i> , DG Environment
10:15	The role of the scenarios and models project in the TEEB context Patrick ten Brink, IEEP
Session 1	: Review of available models and scenarios: "State of the Art" Chair: Leon Braat, Alterra
10:30	Key findings of the project Tom Kram, PBL
10:45	Discussion
11:45	Coffee Break
Session 2	: Assessment of key assumptions in the available quantitative tools Chair: Matt Walpole, UNEP-WCMC
12: 00	Key findings of the project, Leon Braat, Alterra
12: 15	Discussion
13:15	Lunch Break
Session 3	: Policy recommendations: How to use the quantitative tools for policy development within TEEB Chair: Patrick ten Brink, IEEP
14:00	Short presentations (10 minutes) on recommendations for TEEB by five key-experts
14:50	Discussion
15:50	Closing of the conference Alexandra Vakrou, DG Environment

4.2 Attendance List

Name	First Name	Organisation
Alkemade	Rob	Wageningen University and Research Centre
Andre	Viviane	European Commission
Bidoglio	Giovanni	European Commission, Joint Research Centre
Braat	Leon	Alterra
Braeuer	Ingo	Ecologic Institute, Berlin
Christensen	Villy	University of British Columbia
Eppink	Florian	Helmholtz Zentrum für Umweltforschung (UFZ)
Gerdes	Holger	Ecologic Institute, Berlin
Heuermann	Nicol	Netherlands Environmental Assessment Agency (PBL)
Kram	Tom	Netherlands Environmental Assessment Agency (PBL)
McConville	Andrew	Institute for European Environmental Policy (IEEP)
Miège	Robin	European Commission
Neuville	Aude	European Commission
Pereira	Henrique Miguel	Universidade de Lisboa
Pirc-Velkavrh	Anita	European Environment Agency (EEA)
Poggi	Patrizia	European Commission
Richard	Dominique	European Topic Centre on Nature Protection and Biodiversity
Romanowicz	Agnieszka	European Commission
Rosenstock	Manfred	European Commission
Saether	Bent Arne	Ministry of the Environment, Norway
Scharlemann	Jorn	United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC)
Spangenberg	Joachim	Sustainable Europe Research Institute (SERI)
Tallis	Heather	Stanford University
ten Brink	Patrick	Institute for European Environmental Policy (IEEP)
Torta	Giuliana	European Commission
Tucker	Graham	Institute for European Environmental Policy (IEEP)
Vakrou	Alexandra	European Commission
van Vuuren	Detlef	Netherlands Environmental Assessment Agency (PBL)
Walpole	Matt	United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC)