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1. Background to the INDECO time series analysis workshop held January 

2006 

 

To give a brief recap of Work Package 5 (WP5), the main goals and tasks of WP5 are as 
follows: 

• Review existing models that analyse and apply fisheries ecosystem indicators  

• Apply some of these models to specific indicators proposed by WP 2 to 4  

 

INDECO is a coordinated action project It therefore set out to review and possibly 
reformulate and apply some relatively simple and generic analytical models that integrate and 
analyse the indicators developed in other WPs for the purpose of monitoring and evaluating 
the environmental performance of the CFP.  The "modelling methods" of concern to WP5 are 
either mathematical (e.g., ecosystem dynamics or mass balance models) or statistical (e.g., 
time series analysis or statistical power analysis).   

 

The first deliverable of WP 5 reviewed modelling methods that perform the following tasks: 

• Synthesize from existing data indicators suitable for EBFM 

• Analyse the properties of indicators for screening purposes 

• Utilize indicators to guide management decisions 

 

Most of the review/compilation was done by Dr. Pia Orr who compiled and reviewed several 
hundred articles on modelling fisheries ecosystem indicators.  The revised draft was 
completed in November 2005 after reviews of earlier drafts by INDECO partners and the 
INDECO advisory panel.  The main conclusion of the review is that there are several models 
available and potentially suitable for formulating, evaluating and applying indicators in 
European fisheries.  Some of the most common of these modelling methods include the 
following: 

Time series analysis models – These include univariate and multivariate models; one of 
the main purposes is to separate the signal from the noise, i.e. to estimate and represent 
the underlying temporal pattern of the process of interest.   

Multivariate analysis models -- These include for example, principle components analysis 
which synthesizes indicators with common properties.   

Statistical power analysis models – These can evaluate ability to correctly detect time 
trends in indicators.   

Mass balance models – These evaluate the impacts of fishing on the trophic flow in 
ecosystems; yet they tend to have poor predictive power, and it is difficult to assess 
uncertainty in the model outputs.   
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Simulation evaluation modelling frameworks – These complex models simulate 
ecosystem dynamics and indicators based on plausible hypotheses for system dynamics 
and data production. 

In January 2006, a three-day workshop was held to explore the application of time series 
analysis methods to candidate indicators from a few different case studies.  The questions 
addressed in the workshop and in this report include the following: 

• What useful things can the various time series analysis modelling methods tell us 
about the various indicators? 

• What are the input requirements, assumptions, key outputs of various methods of time 
series analysis? 

• How should the time series analysis outputs be interpreted? 

• How can the alternative methods help us to explore the properties of, and screen, 
candidate indicators? 

• How can the methods help us to synthesize information contained in sets of candidate 
indicators from a single ecosystem? 

• How can the methods provide guidance on minimal data quality requirements for 
indicators? 

• What are some additional methods that deserve further attention? 

• What is the minimum detectable annual rate of change in indicators with acceptably 
high power? 

 

This document provides a brief summary of methods explored and conclusions from their 
application to a few of the case studies in the three-day INDECO workshop in January of 
2006.  Supporting material for these conclusions is provided in the following attachments:  

(1) The flier sent out to prospective workshop participants prior to the workshop. 

(2) The set of overhead instructional and introductory slides on time series analysis and 
statistical power analysis that were presented during the three day workshop.   

(3) Some summary results provided by those workshop participants that attended the 
workshop and provided results of their analyses.  Note that only IFREMER, AZTI and 
HCMR have provided output from their workshop analyses so far.  

The attachments are quite detailed in their outline of methodology, assumptions and results. 
The summary documentation provided is therefore quite brief and makes reference to the 
attached documentation where appropriate to avoid unnecessary duplication of text. 
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1.1 Key Logistical Features of the Workshop 

 

The workshop was hosted at IEEP London Office.  The workshop was organized and lead by 
Dr. Murdoch McAllister of Imperial College London, Senior Lecturer in Statistical Risk 
Assessment.  Dr. Pia Orr, an Imperial College Post doctoral research fellow, and Mr. Tom 
Carruthers, at PhD student, assisted in administering the workshop.  There were twelve 
INDECO participants: 

 

Gerjan Piet, IMARES, the Netherlands, 

Michele Gristina, IAMC- CNR, Italy,  

Inigo Muxika, AZTI, Spain, 

Marie-Joelle.Rochet, IFREMER, France  

Sasa Raicevich, ICRAM, Italy, 

Angela Granzotto, IAMC- CNR, Italy,  

Fabio Pravoni, University of Venice, Italy, 

Magnus Appelberg , Swedish Board of Fisheries, Sweden, 

Robert Aps, Estonian Marine Institute, Estonia, 

John, Haralabous, HCMR, Greece, 

Ingeborg Deboois, IMARES, the Netherlands, 

Simone Libralato, University of Venice, Italy. 

 

The three-day workshop consisted of a series of formal presentations of key concepts and 
methodologies, interspersed with methodological exercises that were applied to the candidate 
indicator datasets that the participants brought to work on in the workshop. Indicator datasets 
were brought from the Mediterranean (Adriatic and Aegean Seas), North Sea, Baltic Sea, and 
Bay of Biscay.    

The workshop focused on Time Series Analysis (TSA) methods to evaluate the properties of 
the candidate indicators that were compiled prior to the workshop.  TSA is a potentially useful 
method for analysing candidate indicator series in the following applications: 

1. formulate and test hypotheses about time trends and other temporal patterns in candidate 

indicators 

2. formulate appropriate methods to compute the statistical power of tests for trends in 

candidate indicators 

3. formulate recommendations about which sets of indicators may have suitable statistical 

properties 

4. formulate recommendations about possible modifications to survey design to improve 

indicators 
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1.3 Aims of the Workshop  

 
To : 

• Apply time series analysis (TSA) methods to candidate indicator time series 

• Evaluate statistical power in tests for future time trends in candidate indicators 

• Apply multivariate statistical methods for TSA and statistical power analysis 

• Provide training in some basic principles and methods of TSA 

• Provide inputs to INDECO deliverables in WP2-5  

A variety of time series models were applied.  These included the following: 

• Polynomial, ARIMA, ANCOVA 

• Univariate (single dependent variable) and multivariate (more than one dependent 

variable) models 

 

These methods were applied to estimate time trends in the candidate indicators and the error 
variance associated with the estimated trends.  Both the estimated trends and the associated 
error variance are key inputs to statistical power analysis (see below). 

A variety of different statistical software were applied, including the following: 

• R – applied for simple time series analysis (excluding ARIMA modelling), univariate and 

multivariate statistical modelling, statistical power analysis.   

• SAS - applied for simple time series analysis (excluding ARIMA modelling), univariate 

statistical modelling, and statistical power analysis. 

• SPSS - applied for simple time series analysis and ARIMA TSA modelling, univariate and 

multivariate statistical modelling, 

•  Excel -  applied for simple time series analysis, univariate statistical modelling and 

statistical power analysis 

 

Following the workshop sessions on time series analysis modelling, there were a few sessions 
on statistical power analysis.  Power is the probability of correctly detecting an effect or trend 
in an index at a given sample size (number of years of data), level of significance (value for 
alpha or the acceptable agreed chance of a type I error or false positive), error variance and 
magnitude for the true underlying trend or slope in the time series. Power analysis can be 
applied to evaluate the statistical power to detect trends in indicator time series in the future, 
the number of years that it might take to detect a trend with acceptably high power, and the 
detectable effect size or trend under a given preset statistical power.  We evaluated sensitivity 
of the calculated statistical power to the following: 

• the value set for alpha,  

• whether the test is one- or two-tailed test,  

• the value for the slope in the time trend,  

• the number of years of indicator data,  
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• residual error variance in the data relative to the presumed statistical model that was fitted 
to the data. 

• whether only a univariate statistical model with only one dependent variable (indicator) 
was fitted to the data or a multivariate model with more than one indicator was fitted to 
the data. 

 

2.  Results 

2.1  Time Series analysis 

Generally speaking, the ARIMA family of time series models can be quite highly 
parameterized statistical time series models with a large variety of potential combinations of 
the auto regressive (AR) and integrated moving average (IMA) ARIMA components. Reliable 
ARIMA model selection can only take place if there are at least 50 years of data available.  
Most of the candidate indicators evaluated at the workshop had only up to about 20 or 30 
years of indicator values in a time series.  Thus, no confident and conclusive results could be 
obtained from TSA regarding the selection of ARIMA models for particular indicator time 
series.  Relatively simple ARIMA models however were explored and some of these appeared 
to fit moderately better than others according to AIC criteria for model selection (see 
Appendix 2 for overhead presentation on ARIMA models for further details and example 
applications).   

 Alternatively, due to the relatively short time series of indicator data available, some 
simpler statistical time series modelling approaches were applied.  These included polynomial 
statistical models and Loess smoothers.  In a number of instances, polynomial models could 
be found to fit the historical data well.  Because polynomial models of increasing order form a 
set of nested models, likelihood ratio tests or F-tests can be applied to test the null hypothesis 
that a polynomial one order higher does not fit the data better than the simpler polynomial 
model.  Error variances are also easily computed using polynomial models.  Thus for time 
series that are less than about 20 years in length seemed to lend themselves well to 
polynomial statistical modelling (see overhead presentation on Time Series Analysis which 
among other things gives an example of polynomial modelling of size based indicators from 
the IBTS). 

 Loess smoothing was also applied to estimate trends in indicators.  Because Loess 
smoothers do not conform to parametric statistical models, it is not possible to estimate the 
error variance in a Loess smooth.  However, it is possible to obtain a plausible value for the 
maximum rate of change in the indicator in the historic time series.  Such approximations can 
be used in statistical power analyses to evaluate the power to detect potential future trends in 
time series (Nicholson and Jennings 2004).   

 In indicator datasets from several different regions, e.g., North Sea, Adriatic Sea, 
Aegean Sea, and Bay of Biscay, the annual fluctuations showed pronounced covariation.  
Take for example the size-based indicators from the IBTS survey in the North Sea (Fig. 1).  
The mean maximum length and mean maximum weight indicators both show in some years a 
strong upward fluctuation and then in the next year a downward fluctuation and this co 
varying pattern of fluctuation tends to be consistent across years.  When indicators were 
standardized so that the mean value of all co varying time series was equal to the same 
constant, statistical analyses enabled the rejection of the null hypothesis that there is no 
common annual deviation from trend lines fitted separately to the different time series 
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(Segurado 2006).  The statistical time series model can thus model more than one indicator 
series at a time and include a common time effect to take into account the covariation in 
deviates across years.  The degrees of freedom for the N x 2 data points for the two time 
series are reduced by N-1 estimated common time effect terms.  The residual variance 
however is considerably reduced and this may help to increase the statistical power in tests for 
trends in the indicator time series (see below).   Similarly, multivariate analysis of abundance 
indices for species which covary across years could be modelled with a common year effect 
(see A3.1). 

 

 

Figure 1.  Loess Smooth trajectories plotted against IBTS size based indicators 
reported in Nicholson and Jennings (2004). 

 

 

2.2  Statistical Power analysis 

Nicholson and Jennings (2004) found that statistical power can be expected to be low for 
commonly available fisheries ecosystem indicators.  For example, in size based ecosystem 
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indicators from the IBTS, it would take about 12 years for statistical power of a two-tailed test 
of the hypothesis that the slope is equal to zero to exceed 80% (Fig. 2).  This was computed 
presuming that the slope was at the maximum observed rate of change from the analysis of 
historical data.  In abundance indices in the Bay of Biscay, it would take 10 – 50 years for 
statistical power to exceed 80% for most species (A3.1).  From the point of view of basing 
management actions on detected changes in indicators, this was judged to be too many years 
to have to wait to be able to detect statistically significant changes in ecosystem indicators.  
Preferably, no more than about 3-5 years should go by before a trend can be statistically 
detected.   

 To evaluate the sensitivity of power to the inputs to the statistical power analysis, 
alternative inputs for whether it is a two-tailed test, alpha, and the residual standard error were 
inputted.  In most statistical power analyses of fisheries ecosystem indicators to date (e.g., 
Nicholson and Jennings 2004; Trenkel and Rochet 2004), it has been assumed that the test is a 
two-tail test.  However, in many management decision making contexts, decision rules about 
whether to take a management action depend on whether the indicator has gone over some 
threshold limit reference point.  If there is a concern for example that a decline in a size based 
indicator suggested a further decline in the acceptable state of the ecosystem, then it may be 
appropriate to set up a decision rule requiring remedial action, if a decline in the indicator can 
be detected.  This would then set up a one-tailed test since the null hypotheses would be no 
change or an increase in the indicator is occurring, while the alternative hypothesis of concern 
is that there is a decline in the indicator.  When a one-tailed test was presumed in the 
statistical power analysis, power increased noticeably.  For example in the IBTS, size based 
indicators, power increased from about 60% to about 75% at 10 years (Fig. 2).  However, 
power is still low for management purposes.  In the Bay of Biscay, the power of abundance 
indices increased by 20 to 50% depending on species (see A3.1) 
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Figure 2.  Statistical Power versus number of years in a test to correctly detect declines in 
mean weight indicators in the IBTS.  "2 tail" refers to a one tailed test where the direction of 
the trend, either negative or positive is not of interest.  "1 tail" refers to a two tailed test where 
only a decline in abundance is of interest and the statistical test applied is a one-tailed test.  
Where "a" refers to alpha, or the pre-agreed acceptable level of a type I error and “re" refers to 
the residual standard error assumed in the observed values.  The term “effect” refers to the 
assumed true value for the slope of the indicator. 

 

 

 The alpha value has typically been set at 0.05 in previous statistical power analyses of 
fisheries ecosystem indicators (e.g., Nicholson and Jennings 2004).  Reviews of the use of 
statistical power in environmental studies, e.g., Toft and Shea (1983) and Peterman (1990) 
have suggested that where the costs of a false negative, i.e. failing to detect a real change, are 
very high, and it is difficult to improve the precision and number of observations, it may be 
acceptable to increase the value for alpha from 0.05 to as high as about 0.1.  When alpha was 
increased from 0.05 to 0.1, power increased noticeably (e.g., from about 75 to about 87% for 
the IBTS size based indicator, Fig. 2).   

 Typically, only one methodology and particular model has been applied to compute 
the potential residual error variance that is inputted into statistical power analyses of 
indicators.  For example, Nicholson and Jennings (2004) applied a non-parametric estimator 
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of residual variance that has been found to be "asymptotically inefficient" but provides "a 
good balance between bias and precision with small values of T" (Dette et al. 1998).  
Nicholson and Jennings (2004) applied only this single estimate of residual variance obtained 
for each candidate indicator in their statistical power analyses. However, it is never possible 
to know precisely the actual residual error variance, unless the various processes (i.e. the 
underlying dynamics) generating the data are known with considerable scientific certainty and 
there are very large amounts of data available with which to estimate the residual error 
variance.   

 Reviews of the application of statistical power analysis in environmental science have 
indicated that the assumed residual error variance is typically an uncertain input into 
statistical power analysis (e.g., Toft and Shea 1983; Peterman 1990).  This is because of the 
sparseness of data with which residual error variance is often computed and the typical high 
uncertainty over the processes generating the data in the first place.  These authors have thus 
suggested that power analyses should take into account uncertainty in the inputted residual 
error variances by evaluating the sensitivity of power to alternative plausible values for error 
variance.  Alternative plausible values for error variance can be obtained by fitting 
structurally different time series models to historical data or applying different parametric and 
non-parametric approaches to estimating the residual error variance from available historic 
data or data obtained from the literature or pilot studies.  These alternative methods can 
indicate a range of plausible values for the residual error variance.   

 When a set of alternative polynomial models were fitted to the size based indicator 
data from the IBTS and AIC was applied to choose the best model, the residual standard error 
dropped from about 140 to about 99.  This drop in standard error increased the statistical 
power markedly (Figure 1).  When a one –tailed test is applied, alpha is set at 0.1, and a lower 
residual variance is applied, power can be increased up to nearly five fold, e.g., from about 
18% at seven years for the conventional case to about 85% (Figure 3).   

 When the covariance in a set of related indicators was taken into account, the residual 
variance was considerably less than when the indicators were analysed separately.  When 
statistical power analysis was evaluated to detect trends in sets of covarying indicators where 
the common time effects were modelled, statistical power increased markedly.  For example, 
high statistical power (i.e. about 80%) could be obtained in 6 years for the four IBTS sized 
based indicators and in 8 years for four correlated abundance indices in the Bay of Biscay (see 
A3.1). 
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Figure 3.  Statistical power obtained for 1-tailed tests of the null hypothesis that the 
indicators are not decreasing when the mean weight, mean length, mean maximum 
length and mean maximum weight indicators are modelled together with a common 
time effect. The same relative decline in indicators and value for alpha was presumed 
as those in the previous analyses (Fig. 2). 

 

 

3. Discussion 

3.1 Time Series analysis 

A variety of time series analysis methods were applied to the candidate indicator datasets that 
were brought to the INDECO time series analysis workshop.  The time series methods made it 
easier to visualize and analyse the time trends in the indicators by providing fitted time trends 
to each time series.  The statistical TSA methods generally enabled computation of the 
uncertainty in the estimated trends and also the error variance associated with the estimated 
trends.  As there were a variety of different TSA methods available, uncertainty in the 
estimated trends could also be accounted for by applying different TSA methods to the same 
time series.  The TSA methods provided key inputs, i.e. plausible estimates of error variance 
and credible estimates of potential future rates of change, for statistical power analyses to 
detect trends in the indicators.   

 

3.2 Statistical Power analysis 

With conventional inputs for the level of significance (i.e. alpha), a two-tailed test, the 
statistical power analyses generally showed that power was low for detecting trends occurring 
within about 10 years or less.  However, when uncertainty in the estimate of the residual error 
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variance was taken into account with alternative methods to estimate error variance, alpha 
was increased from 0.05 to 0.1, and a one-tail test was applied to detect decreasing trends, the 
power increased substantially.  However, it still took more than about 5 years to achieve high 
power tests.  When the covariance in sets of related indicators was taken into account and 
statistical power analyses were conducted for sets of covarying indicators with the common 
time effects modelled, the power increased considerably and it was possible to obtain high 
power in about 5-6 years for some of the time series. 

It appeared that at the workshop all of the participants became familiar with the time series 
modelling approaches if they had not been already.  The computation of statistical power was 
new to most but within the workshop, all attendees were able to begin to appreciate the 
concept of statistical power and to compute power in tests for time trends in their indicators.   

In workshop discussions, a few issues were raised with the estimation of statistical power for 
candidate indicators.   

1.  Detectable effect size.  This is a key input for statistical power analysis.  It reflects the 
magnitude of e.g. the trend that would be of interest to be able to detect in future tests for 
trends of concern in ecosystem indicators.  For some quantities such as fish stock abundance, 
rates of decline that may be of concern to fisheries managers can be defined by historic rates 
of decline when the stock experienced serious declines in the past, or by population dynamics 
modelling.  Many papers exist where the authors were able to define rates of decline in fish 
stocks that were of concern that were then applied in statistical power analyses (e.g., 
Gerrodette (1987); Maxwell and Jennings 2005).  However, for many of the ecosystem 
indicators, for example, those for aggregate mean maximum length; it is difficult to formulate 
methods with which to identify rates of decline in the indicators that could be considered to be 
of concern.  It would for example be quite difficult to undertake mathematical ecosystem 
modelling to identify rates of future decline that might be considered to be of concern when 
the indicator is composed of data from multiple species from different trophic levels in the 
ecosystem.  Also, taking the maximum observed historic rates of decline from time series 
analysis (e.g., as in Nicholson and Jennings 2004) as the rate of decline of concern for power 
analysis might be either under estimating or over-estimating rates of decline that could signal 
undesirable ecosystem changes.  The rate of decline of concern for example could vary with 
the absolute value of the indicator; a 10% rate of decline might not be a concern when the 
indicator was at moderate levels five years ago but could be of much greater concern if the 
indicator is at 75% of its value five years ago.  It was urged at the workshop that further 
research effort be directed at formulating methods and protocols for identifying rates of 
decline of concern in the various candidate ecosystem indicators.  But at present, it appeared 
to be acceptable to look for maximum rates of change in historic data and to formulate from 
that a range of plausible rates of change that could be utilized in statistical power analysis.  
This resulted in rather small effect sizes which were the main cause for a low statistical power 
in most instances. 

2.  One-tailed versus two-tailed tests.  Some participants questioned whether it was acceptable 
to switch from a two-tailed test to a one-tailed test in evaluations of statistical power for 
candidate indicators.  It was stated that in a number of instances, decisions on what to do in 
response to changes in indicators, could depend on whether either positive or negative trends 
were detected statistically.  As such, two-tailed tests should be applied in statistical power 
analyses.  However, it was argued by others that decision rules in a given time frame in a 
given ecosystem might be contingent upon detection of a change in one direction.  Thus, if the 
ecosystem is already in a compromised state, a decision rule might be set up such that 
remedial action will be required if a further decrease in some ecosystem indicators is 
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statistically detected.  Under such instances, where there is one particular direction of change 
that is of concern that will trigger a particular management action, a one – tailed test might be 
justified.  The choice of the test thus depends on the null hypothesis to be tested and the null 
hypothesis to be tested in turn depends on the management question to be evaluated.  It was 
agreed by all that clear scientific justifications will be required for the choice of a one-tailed 
test or a two-tailed test in evaluations of statistical power and that a two-tailed test should not 
necessarily be the default for statistical power tests.   

3.  Increasing the value for alpha from 0.05 to 0.1 in tests of statistical power.  Within the 
discussions, it appeared that most could accept that it may be appropriate to modify the value 
assumed for alpha depending on the merits of the situation.  For example, when the number of 
data that could be obtained is low, the error variance high relative to the effect or change that 
would be of interest to detect, and the cost of a type II error was very high (e.g., an 
undesirable change in the state of the ecosystem), an increase in the value for alpha might be 
justifiable.  As this suggestion has long been in the literature and has seen acceptance in 
applied environmental science, no one at the workshop raised objections to considering using 
alpha of 0.1 in statistical power analyses of ecosystem indicators.   

4.  Choice of Software for statistically analysing indicators.  Regarding the choice of software 
for evaluation of indicators, this seemed to be a matter of personal choice.  However, it was 
generally agreed that the use of some statistical software package was essential.  A wide 
variety of types of statistical analysis could be considered and simple non-statistical 
spreadsheet software such as Excel, simply did not have the capabilities to carry out the sorts 
of statistical analyses that could be appropriate such as ARIMA TSA modelling and 
multivariate statistical modelling.  Overall, it appeared that all of the analyses that were 
applied at the workshop could be carried out in R and that batch files could be set up to 
evaluate large sets of data on ecosystem indicators.  SAS also seemed to have most if not all 
of the desired capabilities.  However, the help files for SAS did not seem to be so readily 
accessible and easy to interpret for applying statistical power analyses and multivariate tests.  
SPSS seemed to be set up to permit easy application of ARIMA models and univariate and 
multivariate time series modelling.  However, it did not seem so accessible for setting up 
statistical power analyses based on the outputs from TSA.   

5.  Other analyses not covered in the workshop.  Mulitvariate statistical methods for 
classifying sets of variables with similar properties such as principle components analysis 
were not touched upon in the workshop.  Such methods have already been applied in 
evaluations of ecosystem indicators.  However, the time available did not permit exploration 
of additional such statistical methodologies. 

 

 

4. Summary 

In summary the key conclusions of the workshop are as follows: 

 

4.1 Time series analysis 

1. Only simple ARIMA models with no more than 1 year lag effects in the AR and/or 
moving average components could be applied to most of the candidate indicator time 
series brought to the workshop.  
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• The time series for most candidate indicators are short, i.e. 15-30 years, and yet 50+ 
years are typically recommended for conventional ARIMA modelling. 

2. Polynomial models described short time series (< 20 years) quite well.   

• The models provided an alternative method to characterize historical trends in 
indicators and compute residual error variance.   

• The risk of choosing a polynomial model that is over-parameterized (i.e. over fits the 
data) and under estimating residual variance can be reduced because the degrees of 
freedom (df) used to estimate the residual variance is reduced by the number of 
estimated parameters in the polynomial.   
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where obs
iy  is the observed value for the indicator and pred

iy  is the value for the indicator 

predicted by the polynomial, and p is the number of estimated parameters in the 
polynomial. 

• Furthermore, likelihood ratio tests or F-tests and AIC model choice criteria can be 
applied to choose the best fitting model taking into account the criterion of parsimony. 

3. For most case studies, significant common time effects were found for two or more 
indicators.  This has two important consequences. 

• A large “noise” component can be removed from the estimated time trend in each 
indicator and the estimated residual error variance can be reduced considerably.   

• This can make the underlying trend in the different indicators easier to detect and can 
give statistical tests for trends in indicators higher statistical power.   

4. Loess smoothing is useful for characterizing time trends in indicators but not for 
estimating error variance, because Loess smoothing is not obtained by traditional 
statistical estimation. 

 

4.2 Statistical power analysis 

1. As in previous studies, we found low power in univariate analyses for 5-10 year trends in 
candidate ecosystem indicators. 

2. Increasing alpha (chance of false positive) from 0.05 to 0.10 increased power noticeably.   

• A value for alpha higher than 0.05 may be justifiable in statistical power analyses of 
candidate indicators due to high costs of failure to detect trends in the direction of further 
ecosystem deterioration. 

3. Changing from a two-tailed test to a one-tailed test might be appropriate when it is of 
interest to test whether further deterioration has occurred.  Doing so also increased power 
noticeably.  

• It was agreed that there is need for clear justifications for the choice of a one-tailed or 
two-tailed test in a statistical analysis. 

• e.g. there is only one reference direction that that will trigger remedial action.  
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4. We found considerably higher power could be obtained with multivariate time effect 
models and these were potentially applicable when sets of related indicators show 
covariance in temporal variation. 

• Therefore, ability to detect trends can be improved by combining covarying indicators 
into the same statistical analysis.   

5. Defining the magnitude of trends in candidate ecosystem indicators that would be of 
interest to detect for statistical power analysis is not straightforward. 

• The maximum observed trend in historical time series might either smaller or larger than a 
future trend that would occur under future serious changes to the ecosystem.  In the data 
available to the workshop, maximum observed trend was generally low, leading to a very 
low power of most tests. 

• Rate of decline that might be of serious concern in indicators that are further reduced 
below current levels might be impossible to reliably determine even through ecosystem 
modelling.   
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6.  Appendices 

Appendix 1  Workshop Announcement 

 
INDECO workshop on time series analysis of candidate indicators 

 
To be held January 24-26, 2006 at the following address: 
 
Institute for European Environmental Policy (IEEP) 
28 Queen Anne's Gate 
London SW1H 9AB,  UK 
 
tel: 44-(0)20-77 99 22 44 
Near to the St. James’s Park Underground station on the District and Circle Lines 
 
The workshop is to be lead by Drs. Murdoch McAllister and Pia Orr. 
 
 
Workshop Goals and Activities 
 
The candidate indicators to be analysed are those agreed to be compiled by region at the 
September 6-8, 2005 INDECO meeting in Gdynia.  Please see the Gdynia meeting report or 
check with Indriani Lutchman or Gerjan Piet if you are still uncertain about precisely which 
datasets to prepare and have analysed for this workshop. 
 
A variety of alternative time series statistical models will be identified to which the indicator 
time series can be fitted.  Some of these methods will be univariate statistical models; others 
will be multi-variate time series models in which more than one candidate indicator time 
series can be statistically analysed at once.  One goal of the analyses will be to characterize 
the temporal patterns in the time series, the error variability, and possible correlations with 
historic changes in fishing effort.  The statistical power to detect trends in the indices will be 
evaluated using a few different methods to compute statistical power.  Imperial College will 
prepare general statistical modelling routines for either R or S+, SAS, a few routines in SPSS, 
and WINBUGS.  A few statistical power protocols will also be prepared in EXCEL.  
Participants can also bring their own routines.  An effort will be made to reach a consensus 
among attendees on the formulation of appropriate protocols to compute the statistical power 
in candidate indices using either univariate or multivariate methods. 
 
The workshop will be held from 9AM - 5pm on 24-26 January. There is capacity for about 12 
attendees.  If you wish to attend this workshop, please reply by e-mail at your earliest 
convenience. 
 
Notes for Participants: 
1) Please bring your own lap top computer 
2) Please make sure your laptop has on it Excel with the data analysis tool pack and solver 
3) Please bring text or Excel files containing your candidate indicator time series 
4) Please ensure that you have on your laptop either R, S+, SAS or SPSS 
5) Please make sure you have administrative privileges on your laptop computer 
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6) Please download WinBUGS version 1.4 with software key incorporated (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml) 
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DRAFT Time Table 

 

Day 1 

 
9 AM-1030AM 

Welcome by INDECO Coordinator, Indriani Lutchman 
Introduction to workshop by  M. McAllister 
Introductions of participants and their datasets (each participant be prepared to 
introduce themselves and their indicator time series for no more than 5 minutes each) 
 

1030-1045 AM Coffee Break 
 
1045-1230AM 

Session on fitting univariate time series models to data 
Linear and log-linear models 
Polynomial models 
ARIMA models 
Lowess smoothing 

 
Software: EXCEL, SPSS, SAS, R, WinBUGS 
 

1230-1330 PM Lunch 
 
1330-1500 

Session on diagnostics and model selection for fitting TS models to data 
Residual Analysis 
Auto correlation plots and tests 
R2 
AIC 
Likelihood Ratio Tests 
F-tests 

 
1500-1515 Coffee Break 
 
1515-1700 

Estimation of slope and rate of change in indicators 
Methods for estimating the residual variance from univariate time series models 
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Day 2: Statistical Power Analysis 

 
9AM-1030AM 

Seminar:  Statistical Power Methods for INDECO: M. McAllister 
Group discussion of conventions for computing statistical power 
 

1030-1045AM Coffee Break 
 
1045-1230 

Statistical Power computations for a simple univariate linear model in Excel  
One-tailed tests versus two-tailed tests 
The effects of alpha, error variance, number of years, effect size 
 

1230-1330 Lunch 
 
1330-1500  

Statistical Power computations for a simple univariate log linear model in Excel  
Statistical Power computations using Monte Carlo Simulation in Visual Basic 
 

1500-1515 Coffee Break 
 
1515-1700 

Univariate statistical power analyses of various candidate indicators 
 
Day 3:  Multivariate time series analysis 

 
9AM-1030AM 

Seminar: Multivariate TS Methods for INDECO: M. McAllister 
Group discussion of conventions for Multivariate TS Methods 
 

1030-1045AM Coffee Break 
 
1045-1230 

Fitting Multivariate statistical models to candidate indicator series 
Computing statistical power of multivariate time series models 
 

1230-1330 Lunch 
 
1330-1500 

Evaluation of correlations between indicators and measures of fishing intensity 
 

1500-1515 Coffee Break 
 
1515-1700 

Discussion and conclusions regarding time series analysis of candidate indicators 
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Workshop outline 
Tuesday 24 January:  Univariate time series analysis 

1. Review of alternative univariate TSA methods 

2. Diagnostics 

3. Model selection 

4. Estimation of temporal patterns in candidate indicators 

 
Wednesday 25 January:  Statistical power analysis 

1. Introduction to statistical power analysis 

2. Statistical power computations 

• Excel 

• Visual basic 

3. Univariate statistical power analysis of candidate indicators 

 

Thursday 26 January:  Multivariate time series analysis 

1. Review of Multivariate TS Methods for INDECO 

2. Fitting Multivariate statistical models to candidate indicator 
series 

3. Computing statistical power of multivariate time series models 

4. Evaluation of correlations between indicators and measures 
of fishing intensity 

5. Discussion and conclusions regarding time series analysis of 
candidate indicators 

Univariate time series analysis (TSA) 
models 

• There is only a single independent 
variable in the model,  

• e.g. Univariate linear model 

Yi = m Xi + b 
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where  

Yi is the dependent variable 
(candidate indicator) at time step i 

m is the slope parameter 

Xi is the time elapsed 

b is the intercept parameter 
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Univariate log linear model 

Yi = a * exp((Xi – X0) * d) 

where  

Yi is the independent variable 
(candidate indicator) at time step i 

a is the log linear slope parameter 

Xi is the time elapsed since initial 
time X0 

d is the estimated value of Y at the 
start of the series 

 

Can do a linear regression analysis of 
log transform: 

ln(Yi) = ln(a) + (Xi – X0) * d 
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Key features of the linear and log 
linear TSA models 

 Linear 
Model 

Log linear 
model 

Temporal pattern Follows constant 
linear change 

Follows constant 
exponential or 
proportional 
change 

Interpretation Yn+1 – Yn = 
constant 

Yn+1 / Yn = 
constant 

Negative values 
of Y? 

Indicator can be 
negative 

Indicator can only 
be positive 

Distribution for 
deviates 

Normal 
distribution 

Log normal 
distribution 

Application Short – moderate 
time series 

Statistical power 
analysis 

Short-moderate 
time series 

Statistical Power 
analysis 

 



 28 

Polynomial model 

• Has general form: 

Yi = an Xi
n
+ an-1 Xi

n-1
 + an-2 Xi

n-2
+… + a1 

Xi
 
+ a0 

where a are the parameters of the 
n
th
 order polynomial model. 

 

e.g. 2
nd
 order polynomial is a 

parabolic model: 

Yi = a2 Xi
2
+ a1 Xi + a0 

• Common to fit 3
rd
 and larger order 

polynomials to relatively short 
time series 
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Fit of a 6
th
 order polynomial to a 20-

year time series 
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Polynomial Models  

• provide a purely descriptive or 
explanatory time series model 

• can obtain a much better fit to the 
data than a linear model 

• risk over-fitting of the model to the 
data to obtain artificial temporal 
patterns 

• have little or no predictive power, 
even less than linear models 

• can be used to quantify error 
variance for future indicator 
values  
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Exercise 1.1  Fitting linear and 
polynomial models to data 

Aims 

1. Fit linear, log-linear and a variety 
of polynomial models to your time 
series 

2. Evaluate whether these models 
can adequately describe any of 
your time series 

Methods 

1. Use software of your choice to 
do this analysis 

2. Or try using Excel trendline chart 
& data analysis 

Outputs (on one or two candidate 
time series) 

1. Plot of fit of each model tried to 
time series 

2. Show models obtained with 
parameter estimates 

3. Show R
2
, p-values for parameter 

estimates 
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4. Take about forty minutes to do 
analysis 

Conclusions from linear model and 
polynomial model TSA 

1. Do any of the models adequately 
describe any of your time series? 

2.  What criteria did you use to decide 
whether a model fitted the data? 

3. What time trends if any are 
indicated by the various models? 

4.  Do different models suggest 
different temporal patterns? 
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Auto Regressive Models 

1.  This year’s observation Yt is a 
linear function of 

• the long term average value (u) 
plus  

• some of the most recent 
observations  

(e.g., Yt-1, Yt-2, Yt-3, …) 

2.  the number of recent 
observations included is denoted 
by p  

• p is usually 1, 2, or 3 

3.  the error deviates in 
observations  

• have mean zero,  

• are independent of each other,  

• the error variance is stationary 
over time 
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Auto Regressive Model for p = 1 
(AR(1)): 

 

Yt = (u + (g1 (Yt-1 – u))) + at 

 

where u is the long term average 
value for the set of observations 
Y 

 

g1 is the slope coefficient for 
observation Y at lag of 1 year. 

 

at is the error deviation between 
the observation (Yt) and its 
predicted value (u + (g1 (Yt-1-u))) 
for year t 
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Auto Regressive Model for p = 2 
(AR(2)): 

 

Yt = (u + g1 (Yt-1 - u)+ g2 (Yt-2 - u)) + 
at 

 

where u is the long term average 
value for the set of observations 
Y 

 

at is the error deviation between 
the observation Yt and its 
predicted value (u + g1 (Yt-1-u)+ g2 
(Yt-2-u)) for year t 

 

gi is the slope coefficient for the 
observation Y at lag of i years. 
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Moving Average Models (MA(q)) 

1.  This year’s observation Yt is a 
linear function of 

• the long-term average value (u) 
plus  

• some of the most recent 
deviations from predicted values 
for recent observations (e.g., at-1, 
at-2, at-3, …) 

2.  the number of recent 
observations included is denoted 
by q  

• q is usually 1, 2, or 3 

3.  the error deviates in 
observations  

• have mean zero,  

• are independent t of each other 
and  

• the error variance is stationary 
over time 
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Moving Average Model for q = 1 
(MA(1)): 

 

Yt = (u + h1 at-1) + at 

 

where u is the long term average 
value for the set of observations 
Y 

 

h1 is the slope coefficient for 
annual deviate at lag of 1 year 
(a1). 

 

at is the error deviation between 
the observation (Yt) and its 
predicted value (u + h1 at-1) for 
year t 
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Moving Average Model for q = 2 
(MA(2)): 

 

Yt = (u + h1 at-1+ h2 at-2) + at 

 

where u is the long term average 
value for the set of observations 
Y 

 

at is the error deviation between 
the observation Yt and its 
predicted value (u + h1 at-1+ h2 at-
2) for year t 

 

hi is the slope coefficient for 
annual deviate at lag of i years. 
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Differencing (d) in AR and MA models 

• appropriate when the process is 
non-stationary, i.e., there appear 
to be trends in the time series 

• e.g. differencing at d = 1 

Zt(1) = Yt – Yt-1 

• most common to have d = 1, i.e., 
differencing at lag of 1, but could 
try other values for d. 

• http://www.eng.usf.edu/~argangu
l/TSSP%20Lecture%204_files/fra
me.htm 
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ARIMA(p, d, q) models 

• combination of AR(p) and MA(d) 
models with differencing at lag d.   

• d = 0 means no differencing in 
the observations 

• p = 0 means no AR model 

• q = 0 means no MA model 

• also an option for a constant (u) 
to be included or not 

• ARIMA(1, 1, 1) would mean 
difference the observations Y at 
a lag of 1, and apply in the same 
time series model both the AR(1) 
and MA(1) models: 

Zt = (u + g1 (Zt-1 - u)+ h1 at-1) + at 

• Most statistical software allows 
TSA with ARIMA(p, d, q) models 
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Mean Maximum Weight (Nicholson & Jennings 2004) 
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Fits of various ARIMA(p,d,q)  models 
to Nicholsen and Jennings (2004) 
Mean Maximum Weight Data using 
SPSS 
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Lowess Smooth Functions 

• “Locally weighted least squares” 

• Carries out locally weighted time 
series and scatter plot 
smoothing 

• For both equispaced and non-
equispaced data 

• Analyst can vary the size of the 
smoothing window (0 to 1, with 
default usually set at 0.5) 

• Available in several stats 
packages. 

• Utilized e.g. in Nicholson & 
Jennings (2004) to identify slope 
values at various points in time 
for various indicators series. 
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Lowess smooth fitted to N&J 
(2004) MMW data 
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Exercise 1.2  Fitting ARIMA and 
Lowess models to data 

Aims 

1. Fit ARIMA and Lowess smooth 
models to your time series 

2. Evaluate whether these models can 
adequately describe any of your time 
series 

Methods 

1. Use software of your choice to 
do this analysis 

2. Or try using SPSS time series 
analysis ARIMA option 

3. For ARIMA models try at least 
the following: 

• (1,0,0), (0,0,1), (1,0,1), (0,1,0), 
(1,1,0), (0,1,1), (1,1,1) 

• try these models with and 
without constant also 

4. For Lowess smooth models try 
varying the smoothing parameter 
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(percentage of points to fit) from 
0.5 to 0.75 to 0.25. 
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Outputs (on one or two candidate time 
series) 

1. Plot of fit of each model tried to 
data time series 

2. Show models obtained with 
parameter estimates 

3. Show where available  

• AIC, p-values for parameter 
estimates 

• Correlations between 
parameter estimates 

4. Take about one hour to do 
analysis 
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Conclusions from previous and this 
ARIMA/ Lowess TSA 

1. Do any of the ARIMA models 
adequately describe any of your 
time series? 

2.  What criteria did you use to decide 
whether a model fitted the data? 

3. What time trends if any are indicated 
by the various models? 

4.  Do different ARIMA, Lowess, linear, 
and polynomial models suggest 
markedly different temporal 
patterns? 

5.  What are potential advantages of 
ARIMA models over Lowess, linear 
or polynomial models? 
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Diagnostics & Model Selection of TSA 
Models 

Problems addressed: 

• Infinite variety of alternative TSA 
models that could be fitted 

• Different models may suggest 
different temporal patterns and lead 
to different decisions 

• The goodness of fit of different 
models is difficult to assess just by 
eye-balling the data 

Questions 

• What criteria should be used to 
assess whether to accept or reject a 
particular TSA model? 

• Are there some formal methods to 
test hypotheses about whether one 
model fits the data better than 
another model? 
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Residual Analysis 

 

Residual at time t: 

et = Yt – prediction(Yt) 

 

 

 

 

 

 

 

where  

Yt is the observation at time t 

prediction(Yt) is the TSA model 
prediction of Yt 

 

Statistical assumptions; residuals 

• are not auto-correlated, i.e., are 
independent 

• are normally distributed 
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• variance in residuals is constant 
over time 

Procedures to analyse residuals 

1. Produce a histogram of the residuals 

• is the distribution symmetric? 

• does it appear normally distributed? 

• are there apparent outliers? 

Error for VAR00001 from ARIMA, MOD_1 CON
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2.  Plot standardized residuals over 
time (i.e. divide residuals by the 
standard error in residuals) and 

compare with plots of ±±±±1 standard 
error 

3.  If an outlier exists (> 2-3SE units 
from zero), e.g., at the very 
beginning of the time series, it may 
be prudent to conduct the TSA both 
with and then without it 

20100

400

200

0

-200

-400

-600

-800

-1000

-1200

SENEG1

VAR00003

SE of fit for VAR000

VAR00003

Error for VAR00001 f

VAR00003



 53 

3.  Test whether autocorrelation 
exists in the residuals from a given 
model fit 
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A first-order autoregression, AR(1), has equation  

Xt  ====  µµµµ  ++++ αααα (Xt −−−−1  −−−− µµµµ)  ++++ et , 

where {et}, the innovations, are zero-mean, 

uncorrelated, variance σσσσ2e.  

A first-order moving average, MA(1), is  

Xt  ====  µµµµ  ++++ et  ++++ ββββ et −−−−1 . 

For AR(1) with parameter αααα the ACF is ρρρρk  ====  αααα
k
. 

For MA(1) with parameter ββββ we have  

ρρρρk  ====  0 except for ρρρρ0  ====  1 and ρρρρ1  ====  ββββ/(1 +β+β+β+β
2
). 

This distinguishes the MA(1) from the AR(1):  

for AR(1) only the effects of the early 
observations continue to be felt. 

http://www.staff.city.ac.uk/r.j.gerrard/courses/3ts/ts1.
htm 
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Partial ACF 

This suggests a technique for identifying a first-
order MA:  

• See if the ACF is close to 0 except at lag 1. 

Checking whether a decrease is 'close to geometric' 
(AR(1)) is much harder.  

• The partial ACF (PACF) was introduced to 
combat this.  

• A partial autocorrelation is the amount of 
correlation between a variable and a lag of itself 
that is not explained by correlations at all lower-
order-lags. 
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A few rules to determine ARIMA model structure 

"Rule 6:  

• If the PACF of the differenced series displays 
a sharp cutoff  

• and/or the lag-1 autocorrelation is positive 

• i.e., if the series appears slightly 
"underdifferenced" 

• then consider adding an AR term to the 
model.  

• The lag at which the PACF cuts off is the 
indicated number of AR terms".  

http://www.duke.edu/~rnau/411arim3.htm 



 57 

"Rule 7:  

• If the ACF of the differenced series displays a 
sharp cutoff  

• and/or the lag-1 autocorrelation is negative 

• i.e., if the series appears slightly 
"overdifferenced" 

• then consider adding an MA term to the 
model.  

• The lag at which the ACF cuts off is the 
indicated number of MA terms". 

http://www.duke.edu/~rnau/411arim3.htm 
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A model for the UNITS series--

ARIMA(2,1,0): Previously we determined that 

the UNITS series needed (at least) one order of 

nonseasonal differencing to be stationarized. 

After taking one nonseasonal difference--i.e., 

fitting an ARIMA(0,1,0) model with constant--the 
ACF and PACF plots look like this:  

 

 

 

 

 

 

 

 

Notice that (a) the correlation at lag 1 is 

significant and positive, and (b) the PACF shows 

a sharper "cutoff" than the ACF. In particular, the 

PACF has only two significant spikes, while the 

ACF has four. Thus, according to Rule 7 (6?) 

above, the differenced series displays an AR(2) 

signature.  
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If we therefore set the order of the AR term to 2--

i.e., fit an ARIMA(2,1,0) model--we obtain the 
following ACF and PACF plots for the residuals: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The autocorrelation at the crucial lags--namely lags 1 and 2--has been eliminated, and there is 
no discernible pattern in higher-order lags. 
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Other diagnostics 

 

1.  R
2
  - indicates the fraction of 

variance explained 

• not always provided by software 

• ranges between 0 and 1, with higher 
values better 

• high values can be misleading if the 
model is overparameterized (has 
estimated too many parameters) 
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2. P-values for estimated parameters 

• The p-value provided can be used to evaluate 
whether the model is overparameterized 

• if p-value > alpha for a given parameter this 
suggests that the parameter could be eliminated 
from the model 

 
Variables in the Model: 

 

                     B         SEB      

T-RATIO   APPROX. PROB. 

 

AR1           1.513240     .439493    

3.4431516       .00436513 

AR2           -.688075     .404861   -

1.6995345       .11300520 

MA1           1.781771   34.764794     

.0512522       .95990374 

MA2           -.999009   39.059125    -

.0255768       .97998331 

CONSTANT    -93.525493   90.099210   -

1.0380279       .31817983 

 

• Here, with alpha = 0.05, AR2, MA1, MA2, and 
possibly constant could be eliminated 

• Since p-value for AR2 is close to alpha, AR2 
might be kept 
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2.  Correlations between estimated 
parameters 

• if high (e.g., r> 0.9 or r < -0.9), the 
model may be overparameterized 
and might be reduced 

ARIMA(2,1,2) 
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Correlation Matrix: 
 
                AR1          AR2          MA1          MA2 
 
AR1       1.0000000    -.7521010     .2938497    -
.2884104 
AR2       -.7521010    1.0000000    -.5814676     
.5805937 
MA1        .2938497    -.5814676    1.0000000    -
.9999693 
MA2       -.2884104     .5805937    -.9999693    
1.0000000 
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AIC – Akaike Information Criterion 

• Provides a measure of goodness of 
fit of a model to the data that also 
penalizes models with more 
parameters 

• AIC(M1) = -2 * (Log Likelihood (m1))  

+ 2 (number of estimated 
parameters) 

 

where  

Log Likelihood (mi) is the log of the 
statistical likelihood of model i (mi), 
and  
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Interpreting AIC 

• Two different models must be fitted 
to the same data 

• The two models do not need to be 
nested versions 

• The model with lowest AIC is 
considered best 

• Differences in AIC units of about 3 
or more are considered by 
convention to be meaningful 

• There is no probabilistic 
interpretation of AIC 

• AIC is computed by most statistical 
softwares, e.g., SPSS for ARIMA and 
other mod
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Likelihood Ratio Tests 

• Can be used to test whether the 
less complex model in a pair of 
two nested models can be rejected 
in favour of the more complex 
model 

• Takes the log likelihood of each 
model and formulates a chi square 
statistic based on the difference: 

 

• ChiSq(df) = 2 * (Log Likelihood (m1) 
– log Likelihood (m2))  

 

where  

Log Likelihood (mi) is the log of the 
statistical likelihood of model i (mi), 
and  

model 1 has more parameters than 
model 2. 

df = degrees of freedom = dif in 
number of estimated pars 
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e.g.., can we reject ARIMA(0,1,1) in 
favour of ARIMA(0,1,2)?  

H0:  accept ARIMA(0,1,1) over 
ARIMA(0,1,2) 

HA: reject ARIMA(0,1,1) in favour of 
ARIMA(0,1,2) 
 

ARIMA Model 0, 1, 2 0,1,1 

Standard error 324.1131 317.46885 

Log likelihood -128.26786 -128.34074 

AIC 262.53572 260.68149 

 

Test Statistic:   

Chi sq(1) = 2*(-128.26786-(-128.34074)) = 0.14576 

Critical Value:   

Chi sq(1, 0.95) = 3.84 

Conclusion: 

Test statistic is less than critical value 

Therefore we fail to reject the null hypothesis and 
accept the ARIMA(0,1,1) model 

Can we reject a linear model in favour of a sixth 
order polynomial? 
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Likelihood Ratio Test 

H0:  accept linear model over 6
th
 order 

polynomial model 

HA: reject linear model and accept 6
th
 order 

polynomial model 

Log likelihood 6
th
 order polynomial:  -98.23 

Log likelihood of linear model:  -117.55 

Test statistic  

Chi-square statistic = 2 * (-98.23 –(-
117.55)) = 38.64 

Critical Value 

Chi-square(df = 5, 0.05) = 11.07 

Conclusion: 

reject Null hypothesis 

Accept the polynomial model 
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Exercise 1.3  Diagnostics and Model 
Selection 

Aims 

1. To apply conventional diagnostics 
to evaluate TSA model assumptions 

2. To apply model selection criteria to 
alternative TSA methods 

Methods 

1. Use software of your choice to 
do this analysis 

2. Or try using Excel to compute 
some of the diagnostics 

Evaluations and Outputs  

1. Evaluate one or two candidate 
time series and try a few alternative 
time series models,  

• e.g., linear, polynomial, 
ARIMA(1,1,0), ARIMA(2,1,0) 
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2. Plot a histogram of residuals 

• are there outliers? 

• are the residuals symmetrically 
distributed? 

3. Plot the time series of 
standardized residuals 

• if there are outliers, where are 
they located? 

4. Evaluate whether there are high 
correlations among parameters of a 
given model 

5. Evaluate whether autocorrelation 
(ACF and PACF) in residuals is 
significant 

• try starting with ARIMA(0,1, 0) 
with constant 

• try to use rules 6 and 7 to help in 
model formulation 
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6. Compare the AIC of alternative 
TSA models fitted to the same time 
series 

• Is the different larger than 
about 3? 

• If the models are nested 
models, try a likelihood ratio 
test to see whether the more 
complex model can be 
accepted. 

• Are the likelihood ratio test 
conclusions different from 
those based on the AIC 
results? 

7. Try a likelihood ratio test on a 
linear model versus a 5

th
 or 6

th
 order 

polynomial model 
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8. Based on the above analyses, try 
to select a few plausible alternative 
TSA models for each of the 
alternative indicators 

• Characterize the temporal patterns 
in the candidate indicators based 
on the selected TSA models 

9. Take about two hours to do 
these analyses
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Appendix 3  Workshop reports 

 

 

A3.1  Power analysis of time series analysis in log abundance indices from 

the EVHOE survey 

 
INDECO Workshop London January 2006 
 
by Marie-Joëlle Rochet, IFREMER Nantes, France 
 
Purpose: 
 
Explore statistical properties of a population indicator, log abundance, analysed by TSA. 
Data: EVHOE annual bottom trawl survey, 1987-2004 with gaps in 1991, 1993 and 1996. 
Abundances estimated by swept area method (with depth stratification). 58 species. 
 
Methods: 

1. fit full series of ARIMA models with p,d,q=0 or 1 (larger lags were not tried due to 
short time series). 

2. select best model based on AIC criterion 

3. estimate size effect as maximum slope from series of four data points (i.e., not 
necessarily four years due to missing data) for models based on raw data, and average 
difference for models based on differences. 

4. calculate power for 1-2 tails tests with α=0.05-0.1, with effect size of interest = 
maximum short-term slope for the species in question 

5. fit multivariate time-series models to groups of species with similar time patterns, 
models: 

glm(Nombre ~ Espece +time - 1, family = Gamma(link = log)) 
glm(Nombre ~ Espece +time +Annee- 1, family = Gamma(link = log)) 
glm(Nombre ~ Espece +time/Espece +Annee- 1, family = Gamma(link = log))  

(not done on differences because of missing values). 

6. select best model and calculate power, with effect size of interest = common slope. 
 
Results: 
 
ARIMA models fitting 
The models selected had generally 1 (15 species) or 2 components (42 species). A model with 
3 components was selected for only one species (SPONCAN). 49 models were fitted on 
differenced observations; 11 had an autoregressive component; 42 had a moving average 
component. Selected models and aic values are reported in Table 1. Generally the 
autocorrelation in the data was weak (all data and autocorrelation plots shown in Appendix 1). 
Only 13 species had significant autocorrelation at lag 1; most of these had no further partial 
autocorrelation significant (except for large lags, which are probably not meaningful given the 
short data series, Appendix 2). 
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Table 1: ARIMA models results. p=lag in auto-regressive component, d=differencing (1) or 
not (0), q=lag in moving average component, aic =Akaike Information Criterion, y=year at 
the beginning of period with maximum slope (maxslope), sigma2=residual variance, 
meandiff=average difference between two successive years. 
Species p d q aic y maxslope sigma2 meandiff 
ALLO 0 1 1 51.80 1988 0.240 1.564 0.352 
AMMOTOB 0 1 1 63.71 1995 0.457 3.434 0.400 
ARGESPH 0 1 1 46.29 1988 0.147 0.989 0.209 
ARNOIMP 0 1 1 41.57 1992 0.374 0.788 0.122 
ARNOLAT 0 1 0 44.08 1988 0.860 1.019 0.194 
BOOPBOO 0 1 1 60.11 1988 -0.265 2.978 0.196 
CALMMAC 0 1 0 37.91 1989 0.454 0.656 0.252 
CANCPAG 1 0 0 31.74 1999 -0.144 0.315 0.042 
CAPOAPE 0 1 0 52.48 1995 2.206 1.858 -0.369 
CEPOMAC 1 1 0 39.30 1999 0.416 0.643 0.047 
CHELCUC 0 0 1 35.37 2000 -0.335 0.286 0.072 
CHELGUR 0 1 1 44.42 1998 0.346 0.971 0.099 
CONGCON 1 1 0 33.53 1995 0.626 0.436 0.034 
DICELAB 1 1 0 34.91 1990 0.356 0.473 0.185 
DICOCUN 0 1 1 49.13 1999 0.418 1.357 0.038 
ECITVIP 1 1 0 45.95 1987 0.458 1.028 0.238 
ELEDCIR 0 1 1 45.53 1988 -0.296 1.033 -0.204 
ENCHCIM 0 1 0 43.57 1997 0.717 0.983 0.211 
ENGRENC 0 1 1 59.19 1988 1.125 2.789 0.029 
GADIARG 0 1 1 45.90 2000 -1.817 0.614 -0.009 
GALUMEL 1 1 0 33.93 1995 0.811 0.451 0.130 
HELIDAC 0 1 1 43.11 1999 -0.152 0.789 0.074 
ILLECOI 0 1 1 44.23 1988 0.236 0.913 0.226 
LEPIBOS 0 1 1 38.54 1987 0.180 0.629 0.064 
LEPIWHI 0 0 1 25.07 1988 0.098 0.204 0.081 
LESUFRI 0 1 1 58.92 1995 0.367 2.640 0.314 
LEUCNAE 0 1 1 36.30 1995 0.263 0.541 0.066 
LIZARAM 0 0 1 47.48 1995 -0.714 0.640 -0.062 
LOLIFOR 1 1 0 34.45 1988 0.424 0.436 0.318 
LOLIVUL 1 1 0 35.79 1988 0.322 0.479 -0.074 
LOPHPIS 0 1 0 40.57 1999 -0.835 0.794 0.089 
MERLMER 0 0 1 32.84 1995 -0.166 0.347 0.099 
MERNMER 0 1 1 48.99 1987 -0.373 1.309 0.017 
MICMPOU 0 0 1 34.51 1988 -0.263 0.382 -0.158 
MICUVAR 0 1 1 32.08 1995 0.531 0.399 0.057 
MULLSUR 0 1 1 49.73 1987 0.214 1.265 -0.203 
NEPHNOR 0 1 1 41.93 1988 0.138 0.724 0.093 
PHYIBLE 0 0 1 40.47 1995 0.188 0.566 0.168 
POMOMIN 0 1 1 70.53 1999 0.726 6.114 0.673 
RAJACLA 0 1 1 49.48 1987 0.151 1.243 -0.034 
SARDPIL 0 1 1 42.07 1995 0.755 0.821 0.111 
SCOMJAP 0 1 1 57.95 1995 0.586 2.502 -0.390 
SCOMSCO 1 1 0 48.07 1988 0.466 1.221 0.339 
SCYOCAN 0 1 1 32.29 1988 0.413 0.409 0.232 
SEPIELE 0 1 1 41.79 1999 0.320 0.801 0.010 
SEPIOFF 0 1 1 50.52 1995 0.467 1.489 -0.083 
SEPIORB 1 1 0 35.63 1992 0.424 0.497 0.035 
SEPO 0 1 0 49.04 1999 -0.749 1.453 0.497 
SOLESOL 0 1 1 49.74 1995 0.268 1.384 -0.040 
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SPONCAN 1 1 1 41.17 1997 0.319 0.632 0.180 
SPRASPR 0 1 1 58.72 1987 -0.833 2.404 0.185 
TODASAG 0 1 1 60.42 1988 -0.524 2.717 -0.499 
TODIEBL 0 1 1 38.65 1998 0.365 0.642 0.221 
TRAC 0 1 1 38.47 1995 0.445 0.631 0.141 
TRAHDRA 0 1 1 49.17 1988 0.706 1.360 0.333 
TRISLUS 0 0 1 40.90 1995 0.448 0.568 0.077 
TRISMIN 0 0 1 27.56 1995 0.098 0.244 0.017 
ZEUSFAB 0 1 1 45.01 1999 0.509 1.013 0.104 

 
Power analysis of ARIMA models 
Power of tests for time trends highly varied among species (table 2, Figure 1). This was 
related both to differences in expected effect size, of which magnitude varied owing to the 
method used to determine it: slope can vary significantly between 4-year periods among 15, 
and average difference was generally small. Generally difference model tests had a low 
power, because the effect size was small, variance was higher and degrees of freedom were 
lower than for other model tests. Increasing α and using one-tailed rather than two-tailed tests 
increased power with similar magnitudes, but these effects were low compared to the effect of 
expected effect size. 
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Figure 1: Results of power analysis of ARIMA models with various α risk and tails settings. 
 
Table 2: Results of power analysis of ARIMA models for log abundance of Bay of Biscay 
species. p5years = power with 5 data points, timeto0.8 = number of years required for power 
to be at least 0.8. 
 α=0.05, 2 tails α=0.1, 2 tails α=0.05, 1 tail α=0.1, 1 tail 
Species p5years timeto0.8 p5years timeto0.8 p5years timeto0.8 p5years timeto0.8 
ALLO 0.056 >50 0.113 >50 0.082 >50 0.166 >50 
AMMOTOB 0.060 >50 0.122 >50 0.095 >50 0.191 >50 
ARGESPH 0.053 >50 0.108 >50 0.073 >50 0.148 >50 
ARNOIMP 0.080 47 0.168 37 0.150 37 0.293 27 
ARNOLAT 0.221 13 0.424 11 0.416 11 0.636 8 
BOOPBOO 0.054 >50 0.108 >50 0.074 >50 0.150 >50 
CALMMAC 0.109 28 0.228 22 0.214 22 0.396 16 
CANCPAG 0.063 13 0.136 12 0.110 12 0.234 10 
CAPOAPE 0.778 6 0.897 5 0.894 5 0.947 4 
CEPOMAC 0.099 32 0.208 25 0.193 25 0.363 18 



 84 

CHELCUC 0.165 8 0.379 7 0.368 7 0.623 6 
CHELGUR 0.070 >50 0.146 >50 0.125 >50 0.248 38 
CONGCON 0.278 11 0.502 9 0.496 9 0.706 7 
DICELAB 0.099 32 0.207 25 0.192 25 0.362 19 
DICOCUN 0.071 >50 0.148 50 0.127 50 0.253 37 
ECITVIP 0.086 41 0.180 32 0.162 32 0.314 24 
ELEDCIR 0.064 >50 0.131 >50 0.107 >50 0.214 >50 
ENCHCIM 0.161 18 0.327 14 0.317 14 0.532 10 
ENGRENC 0.143 20 0.294 16 0.283 16 0.490 12 
GADIARG 0.964 4 0.982 3 0.981 3 0.989 3 
GALUMEL 0.475 8 0.705 6 0.701 6 0.846 5 
HELIDAC 0.055 >50 0.111 >50 0.078 >50 0.157 >50 
ILLECOI 0.060 >50 0.122 >50 0.095 >50 0.191 >50 
LEPIBOS 0.058 >50 0.119 >50 0.090 >50 0.181 >50 
LEPIWHI 0.059 14 0.125 13 0.097 13 0.206 11 
LESUFRI 0.058 >50 0.118 >50 0.090 >50 0.181 >50 
LEUCNAE 0.071 >50 0.148 >50 0.127 >50 0.252 37 
LIZARAM 0.375 6 0.671 6 0.664 6 0.839 5 
LOLIFOR 0.133 21 0.275 17 0.263 17 0.464 13 
LOLIVUL 0.088 39 0.185 31 0.168 31 0.324 22 
LOPHPIS 0.271 11 0.493 9 0.486 9 0.698 7 
MERLMER 0.066 12 0.144 11 0.120 11 0.255 10 
MERNMER 0.067 >50 0.140 >50 0.117 >50 0.233 44 
MICMPOU 0.092 9 0.211 9 0.194 9 0.395 8 
MICUVAR 0.215 14 0.415 11 0.407 11 0.627 8 
MULLSUR 0.056 >50 0.113 >50 0.081 >50 0.165 >50 
NEPHNOR 0.054 >50 0.109 >50 0.076 >50 0.153 >50 
PHYIBLE 0.063 13 0.134 12 0.108 12 0.230 11 
POMOMIN 0.064 >50 0.132 >50 0.107 >50 0.215 >50 
RAJACLA 0.053 >50 0.107 >50 0.071 >50 0.143 >50 
SARDPIL 0.212 14 0.409 11 0.401 11 0.621 8 
SCOMJAP 0.073 >50 0.152 47 0.131 47 0.260 34 
SCOMSCO 0.081 47 0.169 37 0.150 37 0.293 27 
SCYOCAN 0.134 21 0.277 17 0.265 17 0.467 12 
SEPIELE 0.071 >50 0.148 50 0.127 50 0.252 37 
SEPIOFF 0.075 >50 0.156 44 0.135 44 0.268 32 
SEPIORB 0.120 24 0.251 19 0.238 19 0.430 14 
SEPO 0.126 23 0.262 18 0.250 18 0.446 13 
SOLESOL 0.058 >50 0.119 >50 0.090 >50 0.182 >50 
SPONCAN 0.077 >50 0.161 41 0.142 41 0.279 30 
SPRASPR 0.103 30 0.217 23 0.202 23 0.378 17 
TODASAG 0.066 >50 0.138 >50 0.114 >50 0.229 46 
TODIEBL 0.086 40 0.181 32 0.164 32 0.317 23 
TRAC 0.109 28 0.228 22 0.214 22 0.396 16 
TRAHDRA 0.121 24 0.253 19 0.240 19 0.433 14 
TRISLUS 0.149 8 0.346 7 0.334 7 0.588 6 
TRISMIN 0.058 15 0.121 13 0.092 13 0.194 12 
ZEUSFAB 0.096 33 0.202 26 0.187 26 0.354 19 

 
Multivariate time series power 
A group of species with similar fluctuations between years was selected on purpose: 
SCYOCAN (small spotted dogfish), TRAC (horse mackerel), TRISMIN (poor cod), and 
ZEUSFAB (John Dorry). 
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The model with a common year effect and separate slopes for each species was selected by 
analysis of deviance (Table 3). Power to detect common slope was much higher than the 
power to detect maximum slope or average difference for separate species (Table 4). 
Table 3: Results of analysis of deviance for multivariate time series analysis. 
Analysis of Deviance Table 

Model 1: Nombre ~ Espece + time - 1 

Model 2: Nombre ~ Espece + time + Annee - 1 

Model 3: Nombre ~ Espece + time/Espece + Annee - 1 

  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)     

1        55    25.5761                                  

2        42    17.5783 13   7.9978 2.1286 0.0345357 *   

3        39    11.7220  3   5.8563 6.7541 0.0008879 *** 

--- 

Model 1: Nombre ~ Espece + time - 1 

Model 2: Nombre ~ Espece + time/Espece - 1 

Model 3: Nombre ~ Espece + time/Espece + Annee - 1 

  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)     

1        55    25.5761                                  

2        52    19.5986  3   5.9775 6.8938 0.0007784 *** 

3        39    11.7220 13   7.8766 2.0963 0.0374395 *   

Table 4: Power analysis for multivariate time series analysis. 
Species p d q aic Effect size sigma2 Power 5 year Time to Power=0.8 
SCYOCAN 0 1 1 32.29 0.232 0.409 0.134 21 
TRAC 0 1 1 38.47 0.141 0.631 0.109 28 
TRISMIN 0 0 1 27.56 0.098 0.244 0.058 15 
ZEUSFAB 0 1 1 45.01 0.104 1.013 0.096 33 
Multivariate    2256 0.12 0.188 0.171 8 
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A3.2  Time series analysis of trawl fleet data from the Aegean and Ionian 

Seas 

 

by John Harabalous 

HCMR, Greece 

 

2.3 Average size (length and weight) in the community 
 
The Mediterranean fisheries are highly diverse in terms of species and fishing gears used. Bottom 
trawling fisheries are essentially multi-species, and they are carried out in a wide range of depths and 
affect different bottoms and communities. Bottom trawl fleets predominate in many Mediterranean 
fisheries, being responsible for a high share of total catches and, in many cases, yielding the highest 
earnings among all the fishing sub-sectors. The high profitability of this fishing practice is largely due 
to its low selectivity with respect to sizes and species caught, and to the high harvests generated. 
 
Trawlers have dramatic effects on the ecosystem including physical damage to the seabed and the 
degradation of associated communities, the over-fishing of demersal resources, and the changes in the 
structure and functioning of marine ecosystems derived from the depletion of populations and the huge 
amount of by-catches and associated discards. From a total of 300 species in the eastern Mediterranean 
about 60% are always discarded and mean discarded proportions reach 45% of the total catches 
(Machias et al., 2001). The latter underlines the necessity to gather relevant information and develop 
indicators contributing to track the impact of trawling on stocks, communities and finally the 
ecosystem. On the other hand, due to their multispecific nature and the large number of landing 
harbours involved, it has been traditionally difficult to gather long and reliable series of trawl fisheries 
data in Mediterranean countries. 
 
For the Mediterranean two case studies are provided, one for the Aegean and the other for the Ionian 
Sea, on the basis of a monitoring program gathering data on a broad number of both target and non-
target species on-board commercial trawlers during an eleven years period from 1995 till 2005. Both 
mean annual length and weight values were calculated to quantify size indicators of the Mediterranean 
demersal fish assemblages. 
 
2.3.1 Material & methods 
 
From 1995 to 2005, on a seasonal basis i.e. in October for autumn, in February for winter, and in May 
for spring, (summer trawling is prohibited in Greek waters) observers on board commercial trawlers 
followed fishing operations and recorded data from hauls stratified in three different depth strata in the 
central Aegean and in the Ionian Sea, considered to be among the most important fishing grounds for 
trawl fisheries in Greece. 
 
In a representative sample from each haul, the various species were sorted out; the number of 
individuals per species and their total weight were taken down, while total length of each individual 
was also recorded. From this, mean length and mean weight of the Aegean and Ionian demersal 
assemblages were calculated. Mean length was calculated as  

N

L

L

N

i

i∑
== 1  

where L is the length of an individual and N is the total number of individuals.  
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Mean individual weight in the catch was calculated as the sum of the catch weights divided by the 
total number of fish caught. 
 
Due to unbalances in sampling stations among seasons/depth zones in the various years of the surveys, 
the effects created by the aforementioned factors were tested using General Linear Model Analysis of 
Variance (GLM ANOVA) using SPSS v.11 for Windows.  Since those effects were found to be 
significant (p<0.05) it was decided to proceed in adjustments by producing marginal means of the 
indicators. 
 
Possible trends in the indicators’ time series were extracted through GLM ANOVA, using the time t 
(year) as the covariate and the slope of the linear model was used as the descriptor of the series’ trend. 
The partial eta squared, the noncentrality parameter and the observed power were also estimated. 
Partial eta squared is the ratio of the variation accounted for by an individual independent variable to 
the sum of the variation accounted for by the independent variable and the variation unaccounted for 
by the model as a whole. The estimated non-centrality parameter is used in determining the observed 
power under the alternative hypothesis for the two tailed test F test. The observed power gives the 
probability that the F test will detect the differences and it was calculated at a=0.05 significance level.  
 
For comparison of the performance of this indicator with that of the other three (i.e. mean max length, 
mean trophic level and Shannon-Wiener diversity index) that were produced for Mediterranean 
waters, the following analyses have been conducted:  
1. Zero lag correlation among time series using Pearson r correlation coefficient. 
2. After standardisation of each series (by subtraction of mean and division by standard deviation) a 

GLM ANOVA was applied using time (year) as covariate and the various indicator time series as 
a random factor (‘metric’) to evaluate the metric’s effect.  

Results for these analyses are given within the section 2.6 (i.e. in the biodiversity indicator section).  
 
2.3.2. Results 
 

Aegean Sea 

Values of mean length and weight per haul were calculated and time series graphs of the two 
indicators are shown in Figure 2.3.2. Although both series appeared to have a negative trend, this trend 
was not significant (Table 2.3.2) and its power was found to be very low (about 0.055). 
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Parameter Estimates

Dependent Variable: Mean Length

113.491 10.425 10.887 .000 89.908 137.074 .929 10.887 1.000

-.315 1.537 -.205 .842 -3.792 3.162 .005 .205 .054

Parameter

Intercept

T

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval Partial Eta

Squared

Noncent.

Parameter Observed Power
a

Computed using alpha = .05a. 

 
 

Parameter Estimates

Dependent Variable: Mean Weight

23.110 2.779 8.315 .000 16.822 29.397 .885 8.315 1.000

-.099975 .410 -.244 .813 -1.027 .827 .007 .244 .056

Parameter

Intercept

T

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval Partial Eta

Squared

Noncent.

Parameter Observed Power
a

Computed using alpha = .05a. 

 
 
2.3.3 Evaluation & Interpretation 

 

The fact that our results show a non significant linear trend with a very low power suggests that the 
effects of trawl fishing on the demersal assemblages of the Mediterranean are not detectable over the 
11-year study period. The latter does not imply that fishing has no impact on resources, but could be 
linked with the small time period of our observation and /or to errors of our monitoring program 
taking into account that our data were derived from commercial fishing observations, with no spatial 
repetition. Although such effects were tackled through GLM techniques they could still cause the 
observed great interannual variations in the indicator values. 
 
2.3.4 Recommendations 
 
The fact that mean length and weight are considered to be influenced by the status of the assemblage 
as determined by the monitoring programme, it is suggested that data derived through experimental 
surveys with spatio-temporal repetition should be also used. Such data for the Mediterranean area are 
those from the MEDITS surveys conducted since 1994, and would be quite interesting to quantify 
indicator values from those, which at the moment are restricted to particular Institutes of the various 
Mediterranean EU countries. It should be pointed out, however, that at present there’s an effort to 
produce indicator values based on MEDITS at a pan-Mediterranean level from the working groups 
involved in the project, and results will be published in a report that will come out in the next few 
months. Thus, since results are not finalised yet, they could not be used in the present study. 
 
 Furthermore, the fact that the Mediterranean monitoring programs run for a rather small time period 
(about 10 years) it is suggested that gathering a greater time series would possibly clarify patterns and 
provide more clear trends. 
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2.4 Mean trophic level 

2.4.1 Materials and methods 

Time-series of the “Trophic level” indicator for the Mediterranean is based on the same monitoring 
program running in the Aegean and the Ionian and following the operation of commercial trawlers. 
These surveys are described in section 2.2. 
 
The trophic levels of individuals were estimated from their length, using relationships between length 
and trophic level as determined by Stergiou and Karpouzi (2002) using TrophLab (Pauly et al., 2000d) 
applied to data from Mediterranean fish species. Trophic level versus length relationships were 
available for 110 out of the 166 species appearing in our original data set. The mean trophic level (TL) 
was calculated per haul according to the formula used for the North Sea 
 
Possible trend of the time series as well as its power were estimated following the procedure presented 
in 2.3.1. For comparison of the performance of this indicator with the other, the same analyses 
appearing in 2.3.1. were applied and results are provided within section 2.6. 

2.4.2 Results  

Aegean Sea 

Values of mean trophic levels per haul for the Mediterranean fish assemblages were calculated and the 
respective time series is given in Figure 2.4.2. Mean trophic level indicator values ranged between 
3.59 and 3.77, appearing to follow more or less the same pattern as the mean size indicators. Again a 
negative trend appears, and this trend is also non significant (Table 2.4.2) with a very low power 
(0.05). 
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Parameter Estimates

Dependent Variable: Mean Trophic level

3.690 .044 83.505 .000 3.590 3.790 .999 83.505 1.000

-.00154 .007 -.236 .819 -1.628E-02 1.320E-02 .006 .236 .055

Parameter

Intercept

T

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval Partial Eta

Squared

Noncent.

Parameter Observed Power
a

Computed using alpha = .05a. 

 
2.4.3 Evaluation and interpretation 

 

Trophic level values calculated for the Mediterranean demersal fish assemblages were generally lower 
than in other areas studied in the framework of this project. The same observation as that made for the 
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mean size indicators could be also made herein regarding the small power to detect effects of trawl 
fishing based on our time series. As before time constraints as well as sampling errors could impact 
our data set and hence estimation of trends. 
 
2.3.4 Recommendations 
 
For the Mediterranean it is recommended to compare the present findings with those that will be 
derived in the near future from the MEDITS project, which could clarify if the lack of spatial 
repetition of the samplings in the present study influenced the lack of significance in the observed 
trends for the indicator’s time series, as well as their power. 
 
 

2.5 Mean maximum length 

2.5.1 Material & methods 

Mean maximum length was calculated per haul according to 2.5.1 Time-series for this indicator were 
based at the same surveys as the indicator “average size in the community” (section 2.3). Performance 
was also assessed in the same manner as that indicator. Possible trend of the time series as well as its 
power were estimated following the procedure presented in 2.3.1. 
 
For comparison of the performance of this indicator with the other, the same analyses appearing in 
2.3.1. were applied and results are provided within section 2.6. 
 
2.5.2 Results 

 

Aegean Sea 
 

Values of mean maximum length per haul for the Mediterranean fish assemblages were calculated and 
the respective time series is given in Figure 2.5.2. This indicator’s time series appeared to follow the 
exact same pattern as the mean length indicators. The negative trend that also appears, is again non 
significant (Table 2.5.2) and has a very low power (0.05).\ 
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Parameter Estimates

Dependent Variable: Mean maximum Length

167.895 16.489 10.182 .000 130.594 205.196 .920 10.182 1.000

-.522 2.431 -.215 .835 -6.021 4.978 .005 .215 .054

Parameter

Intercept

T

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval Partial Eta

Squared

Noncent.

Parameter Observed Power
a

Computed using alpha = .05a. 

 
2.5.3 Evaluation and interpretation 

 

Values of the mean max indicator exhibited a non significant linear trend with a very low power, 
observations made also for the mean size ant mean trophic level indicators. Once again the rather 
small time series of data as well as the fact that they come from a monitoring program, which has no 
spatial repetition could impact our results.  
 
2.5.4 Recommendations 
 
Our recommendation would be once again to compare values from the present study with the 
respective ones from the MEDITS program, when they will be available.  
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2.6 Biodiversity 
 
For the Mediterranean data from the same surveys as described in section 2.3 were used to calculate values 
of Hill’s N1 and N2.  Performance was also assessed in the same manner as that indicator. Possible 
trend of the time series as well as its power were estimated following the procedure presented in 2.3.1. 
 
For comparison of the performance of this indicator with the other, the same analyses appearing in 
2.3.1. were applied and results are provided within section 2.6.  
 
2.6.2 Results 

Values of Hill’s N1 and N2 per haul for the Mediterranean fish assemblages were calculated and the 
respective time series are given in Figure 2.6.2. Although these two indicators appear to have a similar 
pattern, that pattern deviates from that of the other indicators. A negative trend appears in both 
indicator time series (slope for N1: –0.165 per year and for N2: –0.008), which in both cases is 
insignificant (Table 2.6.1: p>0.75) and has a very low power (0.059 and 0.050 respectively). 
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Parameter Estimates

Dependent Variable: Hill' s N1

22.134 3.559 6.219 .000 14.082 30.185 .811 6.219 1.000

-.165 .525 -.315 .760 -1.352 1.022 .011 .315 .059

Parameter

Intercept

T

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval Partial Eta

Squared

Noncent.

Parameter Observed Power
a

Computed using alpha = .05a. 
 

Dependent Variable: Hill' s N2

12.102 2.669 4.535 .001 6.066 18.139 .696 4.535 .980

-.00816 .393 -.021 .984 -.898 .882 .000 .021 .050

Parameter

Intercept

T

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval Partial Eta

Squared

Noncent.

Parameter Observed Power
a

Computed using alpha = .05a. 

 
 

2.6.3 Evaluation and interpretation 

 
Both diversity indices show the same pattern. 
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2.6.6 Relationships among indicators 
 
From Table 2.6.2 it is obvious that all indicators are positively correlated to each other. As expected, 
the highest correlation was found to be between mean length and mean weight, since they provide the 
same type of information. Then this also holds for the relationship between N1 and N2, while N1 
appears to have a non significant correlation with all the rest. Moreover, a high correlation existed 
between mean trophic level and all the rest indicators except for N1. A more detailed representation of 
these correlations appears in Figure 2.6.2 
 

Correlations
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Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 
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Power  ver sus Sample Size
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A3.3  Basque Country Time Series Analysis  

 

By Iñigo Muxika and Angel Borja (AZTI-Tecnalia) 

Two locations from the Basque Country (SE Bay of Biscay) were selected. One of them 

(named Station E) is located at about 7 m water depth, in the inner part of the Nervión Estuary 

(Bilbao), which has been monitored since 1989. The second sampling station (named Station 

M) is located at about 35 m water depth, in the coastal area near Deba, and has been 

monitored since 1995. A study on the pressures over the entire Basque Country is available in 

Borja et al. (2006a). 

None of the two sampling stations is affected by fishery pressures. However, Station E 

was considered azoic until 1990 due to high levels of pollutants (heavy metals and organic 

matter) in sediments and low (even anoxic) dissolved oxygen concentration in bottom water 

layers (Borja et al., 2006b). The estuary has been cleaned up in the past two decades, and an 

important recovery of the quality has been detected, especially in the inner part of the system 

(Borja et al., 2006b). 

Conversely, no important pressure is known in the surroundings of Station M and trends 

are not expected for the benthic communities. 

For this exercise AMBI was selected as benthic community ‘health’ indicator (Borja et 

al., 2000, 2003; Borja and Muxika, 2005; Muxika et al., 2005). High values of AMBI (close 

to 7) indicate highly disturbed sediments; low values of AMBI (close to 0) correspond to 

undisturbed sediments. 

For power analysis, changes of 0.5 units·y-1 in AMBI were arbitrarily considered as 

ecologically meaningful. 

Station E: 
Selection of model: 

Both the linear regression model (Figure 1) and the 2nd order polynomial regression 

model (Figure 2) between AMBI and the sampling year fitted quite good to the data (p<0.000 

for both of them, and r2= 0.768 for the linear regression and r2= 0.80 for the polynomial 

regression). 
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However, a comparison of the likelihood between both models (χ2) shows that the 

addition of one more parameter to the model does not improve it enough. So the simplest one 

(linear regression) was chosen for this exercise. 

Station E

y = -0.2326x + 469.42

R2 = 0.7677
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Figure 1: Linear regression between AMBI and sampling years for Station E. 

Station E

y = -0.011x2 + 43.538x - 43235

R2 = 0.8001
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Figure 2: 2nd order polynomial regression between AMBI and sampling years for 

Station E. 

At Station E, a recovery of the benthic community (negative trend of AMBI indicator) 

was detected due to the sewerage plan, so a one tailed power analysis was carried out for the 

linear regression model abovementioned. 

Power Analysis: 
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A power analysis was carried out for four different significance levels (α= 0.100, α= 

0.050, α= 0.010 and α= 0.001) to study the effect of each significance level on power (Figure 

3). In this way, it can be seen that in almost five years there is a power of 0.80 to detect a 

significant trend of 0.5 AMBI units for α= 0.100; almost six years are needed to detect the 

same trend for a significance level of α= 0.050; for α= 0.010, about eight years are necessary; 

and for α= 0.001, almost nine years. 

Power versus  Sample Size

0.00

0.20

0.40

0.60

0.80

1.00

0 2 4 6 8 10 12 14 16 18

Sample Size

P
o
w
e
r

α= 0.100

α= 0.050

α= 0.010

α= 0.001

 
Figure 3: Power of the linear regression model for Station E versus sample size for 

different significance levels. 

Station M: 
Selection of model: 

As it was expected (for the absence of significant pressures in the area (Borja et al. 

(2006a)), the regression between AMBI and sampling years was not significant for any of the 

regression models (p> 0.1). The linear regression is presented in Figure 4 as an example. 
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y = -0.0367x + 74.911
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Figure 4: Linear regression between AMBI and sampling years for Station M. 

Power Analysis: 
At Station M, any trend in AMBI would be indicative of something: a positive trend 

would indicate an unknown pressure which has disappeared; conversely, a negative trend 

would indicate a new pressure on benthos. 

So, it is interesting to analyze the power of the linear regression model with two tails. In 

Figure 5 the results for different significant levels are shown. For α= 0.100; a little more than 

four years would be enough to obtain a 0.80 power of detecting a trend of 0.5 AMBI units; 

almost five years are needed to detect the same trend for a significance level of α= 0.050; for 

α= 0.010, almost six years are needed; and for α= 0.001, about seven years. 
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Figure 5: Power of the linear regression model for Station M versus sample size for 

different significance levels. 
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