

Impacts of climate change and selected renewable energy infrastructures on EU biodiversity and the Natura 2000 network

# Task 2a – An assessment framework for climate change vulnerability: methodology and results

This report was prepared by:

Todd Sajwaj (**AEA**), Graham Tucker (**IEEP**), Mike Harley (**AEA**) and Yves de Soye (**IUCN**)

August 2009, updated version of February 2011

#### **Table of contents**

| 1 | Intro                                                                | oduction                                                     | 1  |  |  |  |  |  |
|---|----------------------------------------------------------------------|--------------------------------------------------------------|----|--|--|--|--|--|
| 2 | Ove                                                                  | erview of methodology and data sets                          | 4  |  |  |  |  |  |
| 3 | Imp                                                                  | act assessment framework                                     | 7  |  |  |  |  |  |
|   | 3.1                                                                  | Sensitivity thresholds                                       | 9  |  |  |  |  |  |
| 4 | Vuli                                                                 | nerability assessment framework                              | 10 |  |  |  |  |  |
|   | 4.1                                                                  | Adaptive capacity traits                                     | 10 |  |  |  |  |  |
|   | 4.2                                                                  | Scoring of traits                                            | 10 |  |  |  |  |  |
|   | 4.3                                                                  | Species vulnerability assessment                             | 12 |  |  |  |  |  |
| 5 | Res                                                                  | sults                                                        | 14 |  |  |  |  |  |
|   | 5.1                                                                  | Impact assessment                                            | 14 |  |  |  |  |  |
|   | 5.2                                                                  | Adaptive capacity traits                                     | 15 |  |  |  |  |  |
|   | 5.3                                                                  | Vulnerability assessment                                     | 15 |  |  |  |  |  |
|   | 5.4                                                                  | Species that may benefit from climate change                 | 18 |  |  |  |  |  |
| 6 | Dise                                                                 | cussion                                                      | 20 |  |  |  |  |  |
| 7 | Ref                                                                  | erences                                                      | 22 |  |  |  |  |  |
| 8 | Арр                                                                  | pendices                                                     | 25 |  |  |  |  |  |
|   | Appendix 1: Vulnerability assessment tables: breeding birds          |                                                              |    |  |  |  |  |  |
|   | Appendix 2: Vulnerability assessment tables: reptiles and amphibians |                                                              |    |  |  |  |  |  |
|   | Appendix 3: Vulnerability assessment tables: butterflies             |                                                              |    |  |  |  |  |  |
|   | Appe                                                                 | Appendix 4: Vulnerability assessment tables: vascular plants |    |  |  |  |  |  |

### 1 Introduction

The aim of this task is to identify species of Community interest<sup>1</sup> that are considered vulnerable to climate change in the European Union. This will form part of the assessment of likely impacts of climate change on the EU's ability to halt biodiversity loss by 2010 and beyond and will contribute also to Task Report 3a (assessment of impacts of climate change on the Natura 2000 network) and the formulation of policy responses to protect the integrity of the Natura 2000 network [Task Report 2b & 3b].

As noted in this study's' review of adaptation principles (see Task Report 2b & 3b, Section 2), the assessment of vulnerability of species to climate change underpins many strategies for biodiversity adaptation (e.g. IUCN, 2004). The rationale for this is that there is a limited capacity for implementing biodiversity adaptation measures in addition to existing conservation measures. Therefore, it is necessary to identify and prioritise species and habitats that require measures to support climate change adaptation. Vulnerability assessments can inform decisions on such priorities. There is accordingly a specific action in *The European Union's Biodiversity Action Plan "Halting the loss of biodiversity by 2010 – and beyond"* (2008)<sup>2</sup> to "make a preliminary assessment of habitats and species in the EU most at risk from climate change [by 2007], detailed assessment and appropriate adaptation measures prepared [by 2009], commence implementation [by 2010]". This task, therefore, aims to contribute to this action by carrying out an assessment of the vulnerability of species of Community Interest to climate change. The results also form the basis of the Task 3a assessment of the importance of individual Natura 2000 sites for vulnerable species.

Vulnerability assessments should include an examination of climate change impacts and the ability of species and habitats to successfully respond to these impacts. The magnitude of the climate change experienced by a species or habitat (**exposure**) and the degree to which the species or habitat is affected (**sensitivity**) must first be identified. Then the ability of impacted species or habitats to successfully respond to climate change (**adaptive capacity**) must be considered to establish a robust indication of vulnerability. Standardised data types and metrics for exposure, sensitivity and adaptive capacity are required in order to apply the vulnerability assessment framework across the EU and across a range of taxonomic groups.

Research into the exposure and sensitivity of EU species to climate change is fairly abundant in the scientific literature, particularly for species in the northern and western EU (see Task 1 Report). These studies utilised a variety of approaches to understand climate change impacts on species, including analyses of observed data and modelled projections, and knowledge-based expert assessments. However, despite the diversity of species' attributes that have been studied (e.g. changes to population size, climate space, phenology etc.), it is necessary to select abundant and consistent data types and metrics to ensure coherence at the scale required for this study.

Various individual species and taxonomic groups have been used in models that project how they might be impacted by climate change in the future. The emphasis on species has been driven in part by the availability of spatial distribution data sets for a large number of species across taxonomic groups. The spatial data are used in conjunction with Global Climate Models (GCMs) to model the climatic envelope of a species or the range of climatic conditions that enable the species continued existence. Climatic envelope models are used to depict how a species' potential suitable climate space might shift geographically in response to climate change. Climate envelope data sets are becoming increasingly available for a wide range of species (e.g. Berry *et al.* 2005; Berry *et al.* 2007; Araujo *et al.* 2006;

<sup>&</sup>lt;sup>1</sup> These are defined here as species that are listed in Annex II of the Habitats Directive and birds listed in Annex I of the Birds Directive. Other migratory species of birds covered by the Birds Directive (i.e. all naturally and regularly occurring migratory wild birds) are not included in this study.

<sup>&</sup>lt;sup>2</sup> <u>http://ec.europa.eu/environment/nature/info/pubs/docs/brochures/bio\_brochure\_en.pdf</u>

Thuiller *et al.* 2005; Huntley *et al.* 2007, Settele *et al.* 2008). Climate envelope models use various emissions scenarios to capture the range of possible climate futures. Other data types can be used to potentially assess impacts and vulnerability, however most are specific to a narrow range of species.

While a large number of studies have considered the impacts of climate change on species, to date only a limited number of projects have moved beyond the assessment of exposure and sensitivity to a structured approach that considers adaptive capacity and thereby vulnerability. Thuiller *et al.* (2005) used climate envelope models for more than 1350 plant species to assess the amount of climate space lost (sensitivity) under a range of climate change (exposure) and dispersal scenarios (adaptive capacity: no migration vs. full migration). The amount of climate space lost was then compared to IUCN threat categories (IUCN, 2001) to assign threat category labels. The work of Thuiller *et al.* (2005) implicitly blends the assessments of exposure, impact and adaptive capacity in its methods.

Settele *et al.* (2008) used the World Organisation for Animal Health's risk assessment process (OIE, 2000) for butterflies to identify hazards and assess risks from climate change. Generally, this is a similar approach to that of Thuiller *et al.* (2005), however the thresholds of lost climate space and risk categories are different. As with the Thuiller *et al.* (2005) approach, Settele *et al.* do not separate the assessment of impacts from that of adaptive capacity.

Harrison *et al.* (2001) and Hossell *et al.* (2000) used expert knowledge to assess vulnerabilities of species and habitats in Great Britain and Ireland. This work did not use a structured semi-quantitative framework to assess impact and vulnerabilities, but instead used detailed knowledge of the ecology and current status of species and habitats to qualitatively identify those species most vulnerable to climate change.

Very little work has been done to develop a structured approach to adaptive capacity. However, IUCN held a Species Vulnerability Traits workshop that was broadly focused on the identification of life history traits that might pre-dispose species to extinction, including vulnerability to climate change. This database is currently under revision and was not available for the present study, but as Berry (2008) notes "in the longer-term [the Species Vulnerability Traits] could provide a good framework for assessing species' vulnerability to climate change and provide a globally applicable, consistent approach."

The vulnerability of habitats and ecosystems has been considered through a range of approaches, including expert knowledge, the use of surrogate plant and animal species and the development of quantitative indices for specific impacts or habitats. The vulnerability of broad global ecosystem types has been qualitatively assessed using expert knowledge by Berry (2004) and Berry (2008). Berry (2008) notes studies from WGBU (2003) and EEA (2004) that have used expert knowledge to highlight key vulnerabilities of European biogeographical regions.

Other approaches to assess habitat vulnerability have included the use of expert knowledge of habitats and their vulnerability, and the use of selected species as indicators of climate change impacts on habitats. Harrison *et al.* (2001) considered the impacts and vulnerabilities of characteristic species as surrogates for habitat vulnerability to climate change in Great Britain and Ireland. This approach is a simple and effective means of using the abundant species data sets to bypass the significant difficulties associated with modelling habitat responses to climate change. Hossell *et al.* (2000) used expert knowledge to assess the impacts and adaptive capacity of UK habitats to climate change to assign an overall vulnerability ranking. The application of this approach to all of the EU habitats would necessitate consultations with a large number of ecologists and landscape managers across the EU. The BRANCH project developed the Coastal Habitat Vulnerability Index (CHVI) as a

means of identifying those coastal habitat types especially vulnerable to sea-level rise (Berry *et al.*, 2007a). This is one of the few quantitative approaches used for habitat vulnerability, but is unfortunately restricted to coastal habitats.

The approach used in the present study capitalises on the existence of modelled climate space data for 212 individual Natura 2000 species. The methods described in subsequent sections use a semi-quantitative approach to the assessment of climate impacts and subsequently to the assessment of vulnerability. The work described above (Thuiller *et al.*, 2005; Settele *et al.* 2008) combine the assessment of impacts with that of adaptive capacity. Here we use methods for identifying adaptive capacity that are similar to those used by IUCN in a recent assessment of species susceptibility to climate change (Foden *et al.*, 2008) and developed at the Species Vulnerability Traits workshop (above). These methods use expert knowledge of each species' life history, population trends and dispersal capacity to estimate their relative adaptive capacity.

### 2 Overview of methodology and data sets

The impact and vulnerability assessment methodology is defined in accordance with guidance provided by the IPCC's Fourth Assessment Report (IPCC, 2007). The relevant definitions include:

- Sensitivity the degree to which a system is affected, either adversely or beneficially, by climate change (Glossary, IPCC, 2007).
- Exposure the nature and degree to which a system is exposed to significant climatic variations (Glossary, IPCC, 2007).
- Impact all impacts that may occur given a projected change in climate, without considering adaptation; impact is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed and its sensitivity (Glossary, IPCC, 2007).
- Adaptive capacity the ability of a system to adjust to climate change (including climate variability and extremes) to moderate potential damages, to take advantage of opportunities, or to cope with the consequences (Glossary, IPCC, 2007).
- Vulnerability the degree to which a system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes; vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity (Glossary, IPCC, 2007).
- Resilience amount of change a system can undergo without changing state (Glossary, IPCC, 2007).

The methodology developed to assess the vulnerability of species to climate change comprises a two-part process (see Figures 1a & 1b). Firstly, information on the degree of **exposure** to climate change experienced by a species is plotted against its **sensitivity** to that exposure to give a measure of **impact** (i.e. with no adaptation). Secondly, **impact** is plotted against the **adaptive capacity** of that species to give a measure of **vulnerability**.

The above-mentioned terminology was followed in a recent assessment of vulnerability of the species and habitats listed in the Bern Convention (Berry, 2008). However, this approach differs from that taken by IUCN in a recent assessment of species susceptibility to climate change (Foden *et al.*, 2008). The IUCN approach incorporates a blended assessment of adaptive capacity with sensitivity to identify susceptible species. In the approach taken here, it was considered to be more appropriate to keep the assessment of sensitivity and adaptive capacity separate, the logic being that a species' adaptive capacity is only a significant issue if it is sensitive and exposed to climate change. The adaptive capacity of each species subject to significant impacts is then assessed before making a final assessment of vulnerability.

Within the project proposal, the starting point for the vulnerability assessment was cited as those species and habitats identified in Task 1 that were supported by abundant, quantitative datasets sufficient for use in the assessment process. The appraisal of dataset suitability was essentially subjective and based on expert opinion.



#### Figure 1a: Impact and vulnerability assessment framework





However, the information available from Task 1 on the exposure, sensitivity and adaptive capacity of species and habitats to climate change varied considerably amongst taxa and regions. Considerable variation was observed in the types of studies used to examine climate change. These included experimental manipulations, observed data correlated to climatic variables, and modelled impacts of climate change. Similarly, the variables used as surrogates for climate exposure and sensitivity were equally diverse. For example, climate exposure was measured variously as observed temperature and/or precipitation increases, modelled climate change scenarios, and increased atmospheric CO<sub>2</sub> concentrations. Examples of sensitivity to climate change included changes in plant species diversity, phenological changes, changes in species abundance, and changes in potential suitable climate space. The diversity and variability of these data, therefore, deemed them unsuitable for the impact and vulnerability assessment process.

The project team hence decided to base assessments on the results of climate space modelling for a range of Natura 2000 species within several taxonomic groups. Climate space modelling utilises a range of algorithms (i.e. linear regression to artificial neural networks) and climate-hydrological process models to identify bioclimatic envelopes for species and predict changes to the potential distribution of species under a range of climate change scenarios. The overlap between current suitable climate space and that in the future is important as it represents areas where the species may be able to remain most easily. It must be remembered that bioclimatic envelope maps only indicate potential suitable climate space; this does not equate to a new, expanded distribution, but only to where suitable climatic conditions for that species exist. The ability to take advantage of new potential

suitable climate space will depend on a range of factors, including the availability of suitable habitat and the dispersal ability of the species in question (Berry *et al.*, 2007).

The application of bioclimatic envelope modelling is commonly constrained to only those species for which large amounts of data exist with which to train, validate and test the model. This constraint can be overcome through the use of geographically extensive data sets to increase the number of records available for use in the model. However, rare or geographically restricted species often cannot be modelled due to small sample sizes and limited data availability (Pearson & Dawson, 2003; Pearson *et al.*, 2006).

The model outputs used here include those by Huntley et al. (2007) on breeding birds, Araujo et al. (2006) on reptiles and amphibians, Settele et al. (2008) on butterflies, and Thuiller (2004) and Thuiller et al. (2005) on vascular plants. This choice simplifies the impact and vulnerability assessment dramatically: all are modelling studies utilising the standard greenhouse gas emission scenarios from the IPCC Special Report on Emissions Scenarios<sup>3</sup> (i.e. SRES, incl. A1F1, A2, B1, B2). This approach provides a large and consistent dataset for use in the impact and vulnerability assessment process. However, differences between the modelling projects are apparent. While all of the modelling data used for this report have utilised the Hadley Centre HadCM3 coupled atmosphere-ocean general circulation model (Gordon et al. 2000), the projects have employed different emission (i.e. SRES) scenarios to drive the model, different time horizons (2050, 2080, 2100) and modelling algorithms (artificial neural networks, linear models, ensemble techniques). For this reason, and the obvious ecological differences amongst the taxa groups, the analyses have been carried out for each taxonomic group separately. Overall conclusions with respect to the Natura 2000 network will be an output of Task 3a and these will be based on combined analyses of average relative vulnerabilities of each group across sites and regions.

Similar modelling data are unfortunately not yet available for habitats. The considerable computational challenges involved in building models to integrate the complex interactions between species as well as between species and ecosystem processes, have still to be resolved. Projects such as BRANCH and MONARCH have used indicator species as surrogates in habitat assessments. Our hope was to use this approach and assign each of the species in our data set to one or more habitats. In particular, we intended to cross-reference the plants data (1300+ species) with habitats of Community Interest using extracts from the EUNIS database, which was believed to make the necessary linkages between species and habitats. Unfortunately, the database extract we received was not structured appropriately to permit such an assessment. An alternative approach involving the selection of essential indicator species was similarly unfeasible as the identification of suitable indicators for each habitat of Community Interest would be a complex and time-consuming process and outside the remit of this study. For these reasons, we have focussed only on species in this study.

<sup>&</sup>lt;sup>3</sup> http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf

### 3 Impact assessment framework

The assessment of climate change **impacts** on species utilises two data variables: **exposure to climate change and sensitivity to climate change**. When considered together, these provide a qualitative measure of impact. Since there are no direct measures of exposure or sensitivity to climate change, surrogates for these variables must be chosen.

The greenhouse gas emission scenarios (SRES scenarios; IPCC, 2000) and time horizons used to drive global climate models (GCMs) were used as the **surrogate for climate change exposure** (see Table 1; the A1F1, A2, B2 and B1 SRES scenarios can be viewed in a descending order of climate exposure).

| Table 1: SRES greenho    | ouse gas emissior  | n scenarios and    | time horizons | used in the | different |
|--------------------------|--------------------|--------------------|---------------|-------------|-----------|
| impact and vulnerability | / assessments of c | lifferent taxa gro | ups.          |             |           |

| Taxon       | No. of species<br>of Community<br>Interest | Model                                            | No. of species<br>modelled &<br>assessed | % of species<br>modelled &<br>assessed | Model<br>time<br>horizon | Model<br>SRES<br>Scenarios |
|-------------|--------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------|----------------------------|
| Amphibians  | 25                                         | Araujo et al.<br>2006                            | 12                                       | 48.0 %                                 | 2050                     | A1F1, A2<br>B1, B2         |
| Reptiles    | 24                                         | Araujo et al.<br>2006                            | 12                                       | 50.0 %                                 | 2050                     | A1F1, A2<br>B1, B2         |
| Buttorfligg | 38                                         | Settele <i>et al.</i><br>2008                    | 13                                       | 24.2.9/                                | 2050                     | A1F1, A2<br>B1             |
| Dutternies  |                                            |                                                  |                                          | 34.2 %                                 | 2080                     | A1F1, A2<br>B1             |
| Vascular    | 588                                        | Thuiller 2004;<br>Thuiller <i>et al.</i><br>2005 | 26                                       | 4 4 9/                                 | 2050                     | A1F1, A2<br>B1, B2         |
| plants      |                                            |                                                  |                                          | 4.4 /0                                 | 2080                     | A1F1, A2<br>B1, B2         |
| Birds       | 194                                        | Huntley <i>et al.</i><br>2007                    | 149                                      | 76.8 %                                 | 2070-2099                | B2                         |

Nevertheless, it seems important to keep in mind that modelling results and the underlying standardised climate variables can only provide an approximation to the real exposure experienced by a particular species or habitat; limiting factors are prone to be species-specific and so variable that surrogates cannot fully represent climate exposure.

With the modelling algorithms implicitly contributing the climate sensitivity component, the resulting **surrogate for climate change impact** consisted in the changes in potential suitable climate space from current predicted distribution to projected future distribution. This surrogate is described by two metrics (see also Fig. 2):

- 1) "Overlap" is calculated as the number of grid cells within the intersection between the projected and simulated recent ranges divided by the number of squares in the simulated recent range (see Figure 2). This metric is expressed as a percentage where 100% overlap indicates that all current climate space is covered by the projected future climate space. An overlap of 0% indicates that none of the current climate space is contained within the projected future climate space.
- 2) "Ratio" is calculated as the number of grid cells in the projected future range divided by the number in the simulated recent range. While this metric is difficult to depict graphically it describes the relative change in total suitable climatic space. This metric is also expressed as a percentage where values less than 100% indicate a decrease in total suitable climatic space. Values greater than 100% suggest an expansion of total suitable climatic space. .

Both climate impact metrics are important. A projected reduction in suitable climate space (i.e. a low ratio) suggests that a reduction in range is likely (at least to some extent). A

projected low overlap between current and future modelled climate space suggests that the species will need to move to new areas of suitable climate to maintain the total area of their range. Although there is some evidence that species can move in response to climate change (e.g. Hickling *et al.*, 2006), many may be limited by dispersal and colonisation constraints (e.g. limited dispersal abilities, physical barriers to movement, low levels of breeding productivity, or lack of suitable habitat). Such constraints on range expansion into suitable climate space have been observed in butterflies (Hill, 2001, 2002). In some situations, suitable habitats may develop in areas of suitable and accessible climate space. However, this may take a long time (perhaps decades), causing a lag effect if species move more rapidly than required habitats can develop. Furthermore, some new areas of climate space may not be able to support suitable habitats (e.g. because of incompatible soil or hydrological conditions). Moreover, the community composition of many habitats is unlikely to remain intact or be replicated, but will change because their constituent species will be impacted to varying degrees by climate change (Williams and Jackson, 2007). Thus, low levels of overlap may result in substantial range and population impacts on some species.



Figure 2: Sample overlap and ratio calculations for current and projected future species ranges

### 3.1 Sensitivity thresholds

The combined effects of sensitivity and exposure were quantified in terms of projected changes in modelled climate space or overlap in climate space. The threshold values and impact categories for climate ratio and climate overlap are defined in Table 2a.

Table 2a: Categories and threshold values for the two metrics of climate impact: Overlap and Ratio (the number codes are used in the Annexes and some of the table in the text). The percentage values in the  $2^{nd}$  row define the Overlap Impact category and Ratio Impact category. For example: for a Ratio value of <30% (a small Ratio) the impact category is "Very High / -4".

|                                                | OV              | ERLAP      | AND RATIO S    | ENSITIVI    | TY THRESHOLI            | DS DEFINING TH               | E IMPACT CAT             | EGORY                         |
|------------------------------------------------|-----------------|------------|----------------|-------------|-------------------------|------------------------------|--------------------------|-------------------------------|
|                                                | <30%            | 30-<br>50% | 50-<br>70%     | 70-<br>100% | 100-<br>130%            | 130-<br>150%                 | 150-<br>170%             | >170%                         |
| <i>Overlap</i><br>Impact<br>Category<br>& Code | Very High<br>-4 | High<br>-3 | Moderate<br>-2 | Low<br>-1   |                         |                              |                          |                               |
| Ratio<br>Impact<br>Category<br>& Code          | Very High<br>-4 | High<br>-3 | Moderate<br>-2 | Low<br>-1   | Low<br>Robustness<br>+1 | Moderate<br>Robustness<br>+2 | High<br>Robustness<br>+3 | Very High<br>Robustness<br>+4 |

To illustrate the assessment process, Table 2b contains the overlap and ratio metrics (climate impact) for four SRES scenarios (climate exposure) within the 2050 time horizons. The overlap and ratio metrics are then assessed against the thresholds described above to assign an impact category label. In this example, the A1F1 and B1 SRES scenario produce the greatest reductions in the overlap and ratio metrics suggesting the total suitable climate space for the species would shrink (i.e. ratio is reduced) and the projected future climate space will share a smaller portion of the current climate space (i.e. reduced overlap). The A1F1 scenario often produces the most significant changes in climate and is expected to have the most dramatic impacts on climate space models; however this is not always the case.

Table 2b: A worked example of the impact assessment for the Meadow Viper (*Vipera ursinii*). For instance: under A1F1, by 2050, Overlap is 62.8%, hence a Moderate (-2) Overlap Impact Category; Ratio is at 125% wherefore the Ratio Impact Category is "Low Robustness".

| Time Horizon | SRES Scenario | Overlap | Overlap Impact Category | Ratio  | Ratio Impact Category |
|--------------|---------------|---------|-------------------------|--------|-----------------------|
| 2050         | A1F1          | 62.8%   | MODERATE                | 125.0% | LOW ROBUSTNESS        |
| 2050         | A2            | 76.2%   | LOW                     | 164.0% | HIGH ROBUSTNESS       |
| 2050         | B1            | 62.6%   | MODERATE                | 125.2% | LOW ROBUSTNESS        |
| 2050         | B2            | 72.5%   | LOW                     | 149.7% | MODERATE ROBUSTNESS   |

### 4 Vulnerability assessment framework

The assessment of vulnerability of species to climate change plots the outputs of the **impact** assessment against their adaptive capacity.

#### 4.1 Adaptive capacity traits

The assessment of adaptive capacity is a new area of ecological thought and, as such, there are no existing assessments of the ability of species or habitats to adapt to the impacts arising from climate change. However, key ecological parameters can be identified that might constrain the autonomous ability of species to adapt to climate change impacts, including their distribution, population size and trend, fecundity, associations with habitats and other species, and dispersal ability. Certain traits can, therefore, be used to assess the likelihood that these factors will affect a given species. The importance of individual factors influencing adaptive capacity will vary across taxa, depending on the projected impact of each. In particular, factors affecting dispersal are not highly relevant to species with high modelled overlap between their current and projected climate space. Thus, adaptive capacity is assessed separately for the projected changes in climate space ratio and climate space overlap.

The general ecological traits that constrain the adaptive capacity of all species are:

- Small population and/or range in Europe
- Low survival and/or productivity rates
- Long generation times
- Declining population in Europe
- Low genetic diversity
- Specialised and uncommon habitat requirements
- Narrow niche
- Critical association with another vulnerable species.

These will hereafter be called General Restrictions.

For species with <70% overlap in projected climate space (i.e. a Moderate, High or Very High Climate Overlap Impact), an additional assessment is carried out of the following traits, indicating their likely colonisation ability:

- Barriers to dispersal (e.g. water, topography and man-made barriers)
- Limited dispersal and/or colonisation ability
- Mainly distributed in fragmented habitats that limit dispersal.

These will hereafter be called **Colonisation Restrictions**.

### 4.2 Scoring of traits

For each species, each adaptive capacity trait is scored on a scale that ranges from zero to two as follows:

- 0 = no constraint on adaptation
- 1 = moderate constraint
- 2 = severe constraint.

Various datasets and references have been used to score the traits for each species, according to consistent qualitative thresholds where possible. For example, the assessment of declines in bird populations is based on the decline thresholds and assessments in BirdLife International's latest assessment of the status of birds in Europe (BirdLife International, 2004a). However, several traits and some species cannot be assessed quantitatively, and these are therefore assessed by expert judgement, taking into account general published information on life histories, habitat use and other ecological characteristics, and comparing this with the modelled distributions of climate space and maps of habitat and topography.

To illustrate the process of scoring adaptive capacity constraints, the worked example of the Meadow Viper (*Vipera ursinii*) will be continued in Tables 3 and 4. Based on expert judgement and available life history data, the Meadow Viper was judged to have two General Restrictions to its adaptive capacity: a moderate constraint (score 1) attributed to its regional European range and a severe constraint (score 2) imposed by significant population declines. The Meadow Viper was also judged to have two Colonisation Restrictions to its adaptive capacity: a moderate constraint from its limited dispersal ability (score 1) and a moderate constraint attributed to significant habitat fragmentation (score 1).

| Table  | 3:    | Adaptive | capacity | scoring | for | the | Meadow | Viper | (Vipera | ursinii). | See | text | for |
|--------|-------|----------|----------|---------|-----|-----|--------|-------|---------|-----------|-----|------|-----|
| explar | natio | ons.     |          |         |     |     |        |       |         |           |     |      |     |
|        |       |          |          |         |     |     |        |       |         |           |     |      |     |

| Adaptive Capacity<br>Restriction | Ecological Trait                                                     | Adaptive Capacity<br>Score |
|----------------------------------|----------------------------------------------------------------------|----------------------------|
|                                  | Small population and/or range in Europe                              | 1                          |
|                                  | Low survival and/or productivity rates                               |                            |
|                                  | Long generation times                                                |                            |
| Conoral rostrictions             | Declining population in Europe                                       | 2                          |
| General restrictions             | Low genetic diversity                                                |                            |
|                                  | Specialised and uncommon habitat requirements                        |                            |
|                                  | Narrow niche                                                         |                            |
|                                  | Critical association with another vulnerable species                 |                            |
|                                  | Subtotal                                                             | 3                          |
|                                  | Barriers to dispersal (e.g. water, topography and man-made barriers) |                            |
| Colonisation restrictions        | Limited dispersal and/or colonisation ability                        | 1                          |
|                                  | Mainly distributed in fragmented habitats that limit dispersal       | 1                          |
|                                  | Subtotal                                                             | 2                          |

Using the above adaptive capacity constraint calculations, the sum of trait scores (excluding Colonisation Restriction traits for species with >70% overlap in climate space, i.e. with a low Overlap Impact) is calculated and used to define an **Adaptive Capacity Constraint Score** as follows:

Low = score < 2Moderate = 2-4 High = >4.

Bringing the above together, Table 4 complements the Meadow Viper's *impact assessment* from the previous section with the scoring of its *adaptive capacity*, producing Adaptive Capacity Constraint Scores for several GHG emission scenarios (SRES A1F1, A2, B1, B2). Each Adaptive Capacity Constraint Score is calculated as follows: when the *Overlap Impact Category* is moderate or greater, the score equals the sum of the *General Restriction* and the *Colonisation Restriction* scores; if the *Overlap Impact Category* is low (i.e. species with >70% overlap in climate space) only the *General Restriction* score is used. Because the Meadow Viper is projected to experience a moderate *Overlap Impact* to its suitable climate space under the A1F1 and B1 SRES scenario, the resulting Adaptive Capacity Constraint Score is "5" - a High constraint on its adaptive capacity. Under the A2 and B2 scenarios its total adaptive capacity score is "3" - a Moderate constraint on its adaptive capacity.

It is worth noting that in some cases there were insufficient data to adequately assess the degree of overlap between current and projected suitable climate space; in these cases, it is difficult to make firm conclusions about the amount of dispersal required to move to new areas.

|                 |                  |         | Impact Sco                    | oring  |                       | Adaptive Capacity Scoring        |                                      |                                  |                               |  |
|-----------------|------------------|---------|-------------------------------|--------|-----------------------|----------------------------------|--------------------------------------|----------------------------------|-------------------------------|--|
| Time<br>Horizon | SRES<br>Scenario | Overlap | Overlap<br>Impact<br>Category | Ratio  | Ratio Impact Category | General<br>Restricti<br>on Score | Colonisation<br>Restriction<br>Score | Total Adaptive<br>Capacity Score | Adaptive Capacity<br>Category |  |
| 2050            | A1F1             | 62.8%   | MODERATE                      | 125.0% | LOW ROBUSTNESS        | 3                                | 2                                    | 3 + 2 = 5                        | HIGH                          |  |
| 2050            | A2               | 76.2%   | LOW                           | 164.0% | HIGH ROBUSTNESS       | 3                                | 2                                    | = 3                              | MODERATE                      |  |
| 2050            | B1               | 62.6%   | MODERATE                      | 125.2% | LOW ROBUSTNESS        | 3                                | 2                                    | 3 + 2 = 5                        | HIGH                          |  |
| 2050            | B2               | 72.5%   | LOW                           | 149.7% | MODERATE ROBUSTNESS   | 3                                | 2                                    | = 3                              | MODERATE                      |  |

#### Table 4: Impact and adaptive capacity scoring for the Meadow Viper (Vipera ursinii)

#### 4.3 Species vulnerability assessment

The overall vulnerability of each species is characterised according to categories based on the results of the impact and adaptive capacity assessments (see Tables 3 and 4). This is **calculated separately with respect to projected changes in the ratio of climate space and overlap in climate space**. The general assumption used in these categorisations is that there is little scope for adaptation where there is a reduction in range size; therefore, constraints on adaptive capacity will exacerbate the impacts of climate change. It is also assumed that many species have the potential to colonise new areas with suitable climate space (i.e. outside the areas of overlap). Therefore, unless critical constraints on adaptive capacity exist, the impacts of reduced overlap in climate space will be mitigated by some degree of adaptation. In other words, the **vulnerability assessment characterises a projected reduction in climate space as a higher level of vulnerability than a reduction of climate space overlap**.

The vulnerability assessment categories are as shown in Tables 5 and 6 and visualised in Figure 3.

Finally, the two separate vulnerability assessments (for ratio, overlap) are compared and the highest vulnerability category taken to be the species' overall measure of vulnerability. This simple rule is used because impacts are unlikely to be fully additional, and we do not have enough information to assess potential interactions.

To complete the example of the Meadow Viper, the impact and adaptive capacity categories are used to assign a vulnerability category. For example under the A1F1 scenario, the Meadow Viper exhibits a "moderate" impact category for overlap and a "high" adaptive capacity constraints category. When these are used with Table 6, the vulnerability assessment category is identified as "high" for overlap. The Meadow Viper has been assigned a "low robustness" for the climate ratio metric; however, Tables 5 and 6 do not illustrate the lookup values for this somewhat unusual outcome.

In this report, the additional vulnerability assessment categories "low positive" and "moderate positive" have been created and used to characterize those species with slight impacts on climate space overlap AND total gains in suitable climate space (i.e. ratio) AND low constraints to adaptive capacity. It applies to a small number of birds, herpetiles, plants and butterflies, discussed in Section 5.4.

Table 5: Vulnerability assessment with respect to reductions in climate space (ratio). The Vulnerability Categories are defined by combining the Climate Ratio Impact Category with the Adaptive Capacity Constraint Score. For example, a Very High climate ratio impact combined with a Moderate adaptive capacity constraint means that Vulnerability is ranked as Critical.

| LOW                                | Low      | Moderate  | High      | Very High<br>Very High |
|------------------------------------|----------|-----------|-----------|------------------------|
| Low                                |          | Madarata  | Lieb      | Versellish             |
| Moderate                           | Moderate | High      | Very High | Critical               |
| High                               | High     | Very High | Critical  | Extremely Critical     |
| Adaptive<br>Capacity<br>Constraint |          |           |           |                        |

Table 6: Vulnerability assessment with respect to reductions in climate space overlap. The Vulnerability Categories are defined by combining the Climate Overlap Impact Category with the Adaptive Capacity Constraint Score. For example, a High climate overlap impact combined with a Low adaptive capacity constraint means that Vulnerability is ranked as Moderate.

|                                    | LOW      | Climate Overlan |           | very nigh |
|------------------------------------|----------|-----------------|-----------|-----------|
|                                    | Low      | Madarata        | Llink     | Van/ High |
| Low                                | None     | Low             | Moderate  | High      |
| Moderate                           | Low      | Moderate        | High      | Very High |
| High                               | Moderate | High            | Very High | Critical  |
| Adaptive<br>Capacity<br>Constraint |          |                 |           |           |

Figure 3: Vulnerability assessment, the vulnerability categories visually explained



## 5 Results

### 5.1 Impact assessment

The sample results presented below (see Table 7) illustrate the application of the impact assessment methodology to some of the reptile and amphibian, butterfly and breeding bird species considered in the study. The full analyses for all species are given in the appendices at the end of this report.

Considerable variation was observed in the results of the impact assessment and this was largely a function of the climate assumptions and time slices used in the modelling studies. Assessments for reptiles and amphibians were confined to the 2050s, butterflies and plants spanned the 2050s and 2080s, and the assessment for birds looked only at 2100.

The reptiles and amphibians show little variation in the degree of overlap and total change in climate space among SRES scenarios; this accords with GCM outputs which also show little variation between scenarios up to the 2050s (Jenkins and Lowe, 2003). Greater variance begins to emerge among butterflies and plants when assessing data for the 2080s; here the high (A1F1) SRES scenario typically produces the greatest change in potential suitable climate space. Data from 2100 further illustrates this trend; even the low (B1) SRES scenario produces large changes in potential suitable climate space, both in terms of overlap and total change in climate space.

| Table 7: Impac | t assessment    | framework for | or three | time  | horizons   | (2050,  | 2080 a   | nd 21  | 00) a | nd  |
|----------------|-----------------|---------------|----------|-------|------------|---------|----------|--------|-------|-----|
| associated SRE | ES scenarios (A | A1F1, A2, B1, | B2), for | a sub | set of spe | cies to | illustra | te the | ranki | ing |
| process        |                 |               |          |       |            |         |          |        |       |     |

|                            |                          | IMPACT ASSESSMENT |           |         |           |            |                      |
|----------------------------|--------------------------|-------------------|-----------|---------|-----------|------------|----------------------|
|                            |                          | Expo              | sure      |         | Se        | ensitivity |                      |
| Species                    | Scientific name          | Horizon           | Scenario  | Overlap | Category  | Ratio      | Category             |
|                            | -                        | Hor               | izon 2050 |         |           | -          |                      |
| European Leaf-toed Gecko   | Phyllodactylus europaeus | 2050              | A1F1      | 54%     | Moderate  | 101%       | Low robustness       |
| European Leaf-toed Gecko   | Phyllodactylus europaeus | 2050              | B1        | 51%     | Moderate  | 91%        | Low                  |
| European Leaf-toed Gecko   | Phyllodactylus europaeus | 2050              | B2        | 53%     | Moderate  | 88%        | Low                  |
| Iberian Rock Lizard        | Lacerta monticola        | 2050              | A1F1      | 48%     | High      | 51%        | Moderate             |
| Iberian Rock Lizard        | Lacerta monticola        | 2050              | B1        | 54%     | Moderate  | 58%        | Moderate             |
| Iberian Rock Lizard        | Lacerta monticola        | 2050              | B2        | 56%     | Moderate  | 61%        | Moderate             |
| Spectacled Salamander      | Salamandrina terdigitata | 2050              | A1F1      | 25%     | Very High | 68%        | Moderate             |
| Spectacled Salamander      | Salamandrina terdigitata | 2050              | B1        | 32%     | High      | 85%        | Low                  |
| Spectacled Salamander      | Salamandrina terdigitata | 2050              | B2        | 25%     | Very High | 74%        | Low                  |
| Great Crested Newt         | Triturus cristatus       | 2050              | A1F1      | 87%     | Low       | 111%       | Low robustness       |
| Great Crested Newt         | Triturus cristatus       | 2050              | B1        | 87%     | Low       | 110%       | Low robustness       |
| Great Crested Newt         | Triturus cristatus       | 2050              | B2        | 84%     | Low       | 107%       | Low robustness       |
| Danube Clouded Yellow      | Colias myrmidone         | 2050              | A1FI      | no data | Moderate  | 64%        | Moderate             |
| Danube Clouded Yellow      | Colias myrmidone         | 2050              | A2        | no data | High      | 49%        | High                 |
| Danube Clouded Yellow      | Colias myrmidone         | 2050              | B1        | no data | Low       | 92%        | Low                  |
|                            |                          | Hor               | izon 2080 |         |           |            |                      |
| Danube Clouded Yellow      | Colias myrmidone         | 2080              | A2        | no data | High      | 30%        | High                 |
| Danube Clouded Yellow      | Colias myrmidone         | 2080              | A1FI      | no data | High      | 37%        | High                 |
| Danube Clouded Yellow      | Colias myrmidone         | 2080              | B1        | no data | Moderate  | 55%        | Moderate             |
| Silver-spotted Skipper     | Hesperia comma catena    | 2080              | A1FI      | no data | High      | 40%        | High                 |
| Silver-spotted Skipper     | Hesperia comma catena    | 2080              | B1        | no data | Moderate  | 61%        | Moderate             |
| Silver-spotted Skipper     | Hesperia comma catena    | 2080              | A2        | no data | Moderate  | 54%        | Moderate             |
| Fenton's Wood White        | Leptidea morsei          | 2080              | A1FI      | no data | Low       | 91%        | Low                  |
| Fenton's Wood White        | Leptidea morsei          | 2080              | A2        | no data | Low       | 87%        | Low                  |
| Fenton's Wood White        | Leptidea morsei          | 2080              | B1        | no data | Low       | 81%        | Low                  |
|                            |                          | Hor               | izon 2100 |         |           |            |                      |
| Cinereous Vulture          | Aegypius monachus        | 2100              | B2        | 8%      | Very High | 107%       | Low robustness       |
| Barbary Partridge          | Alectoris barbara        | 2100              | B2        | 1%      | Very High | 4%         | Very High            |
| Hazel Grouse               | Bonasa bonasia           | 2100              | B2        | 62%     | Moderate  | 74%        | Low                  |
| Moustached Warbler         | Acrocephalus melanopogon | 2100              | B2        | 7%      | Very High | 158%       | High robustness      |
| Aquatic Warbler            | Acrocephalus paludicola  | 2100              | B2        | 0%      | Very High | 79%        | Low                  |
| Boreal Owl                 | Aegolius funereus        | 2100              | B2        | 58%     | Moderate  | 68%        | Moderate             |
| Rock Partridge             | Alectoris graeca         | 2100              | B2        | 18%     | Very High | 183%       | Very high robustness |
| Lesser White-fronted Goose | Anser erythropus         | 2100              | B2        | 27%     | Very High | 28%        | Very High            |
| Tawny Pipit                | Anthus campestris        | 2100              | B2        | 35%     | High      | 85%        | Low                  |
| White-rumped Swift         | Apus caffer              | 2100              | B2        | 0%      | Very High | 89%        | Low                  |
| Spanish Imperial Eagle     | Aquila adalberti         | 2100              | B2        | 12%     | Very High | 195%       | Very high robustness |

### 5.2 Adaptive capacity traits

Table 8 provides examples for the scoring of constraints on adaptive capacity and dispersal. The results were compatible with the general life history information for individual species. For example, many of the breeding bird species had either low to moderate constraints to dispersal, while those of reptiles and amphibians were routinely moderate to high. Information to support the assessment of adaptive capacity traits and constraints on dispersal was lacking for some categories, such as habitat fragmentation and levels of genetic diversity. A number of species were difficult to assess, as detailed life history data were not available to support judgements.

| Species                    | Scientific name          | Constraints to adaptive capacity | Constraints to dispersal |
|----------------------------|--------------------------|----------------------------------|--------------------------|
| Cinereous Vulture          | Aegypius monachus        | Moderate                         | Moderate                 |
| Barbary Partridge          | Alectoris barbara        | Moderate                         | Moderate                 |
| Hazel Grouse               | Bonasa bonasia           | Low                              | Moderate                 |
| Moustached Warbler         | Acrocephalus melanopogon | Low                              | Low                      |
| Aquatic Warbler            | Acrocephalus paludicola  | Moderate                         | Low                      |
| Boreal Owl                 | Aegolius funereus        | Low                              | Moderate                 |
| Rock Partridge             | Alectoris graeca         | Low                              | Moderate                 |
| Lesser White-fronted Goose | Anser erythropus         | Moderate                         | Low                      |
| Tawny Pipit                | Anthus campestris        | Moderate                         | Low                      |
| White-rumped Swift         | Apus caffer              | Low                              | Low                      |
| Spanish Imperial Eagle     | Aquila adalberti         | Moderate                         | Moderate                 |
| Golden Eagle               | Aquila chrysaetos        | Low                              | Low                      |
| Greater Spotted Eagle      | Aquila clanga            | Moderate                         | Low                      |
| Imperial Eagle             | Aquila heliaca           | Moderate                         | Low                      |
| Squacco Heron              | Ardeola ralloides        | Low                              | Low                      |
| Short-eared Owl            | Asio flammeus            | Low                              | Low                      |
| Ferruginous Duck           | Aythya nyroca            | Moderate                         | Low                      |
| Barnacle Goose             | Branta leucopsis         | Low                              | Low                      |
| Silver-spotted Skipper     | Hesperia comma catena    | Moderate                         | High                     |
| Fenton's Wood White        | Leptidea morsei          | High                             | Low                      |
| European Leaf-toed Gecko   | Phyllodactylus europaeus | Moderate                         | Moderate                 |
| Iberian Rock Lizard        | Lacerta monticola        | Moderate                         | Moderate                 |
| Alpine Salamander          | Salamandra atra          | High                             | Moderate                 |
| Spectacled Salamander      | Salamandrina terdigitata | Moderate                         | Moderate                 |
| Great Crested Newt         | Triturus cristatus       | Moderate                         | Moderate                 |
| Danube Clouded Yellow      | Colias myrmidone         | High                             | High                     |

#### Table 8: Examples of adaptive capacity constraints

### 5.3 Vulnerability assessment

The full set of completed vulnerability assessments for all species is given in Annexes 1 to 4. To provide an example, vulnerability assessments for two species of plants are shown in Table 9.

**Assessment data for breeding birds** were only available for 2100 and for the medium-low (B2) SRES scenario. A large number exhibit 'high' or 'very high' vulnerability to climate change (see Table 10, see also Fig. 7 in Task Report 3a); 54% show less than 25% overlap between existing and projected suitable climate space. Therefore, significant range shifts would be required to colonise potential suitable climate space. Many birds are highly mobile and some are migratory, so the major constraint to dispersal is likely to be the availability of suitable habitat and the condition of their populations (e.g. whether recruitment is sufficient to support significant emigration).

Table 9: Sample vulnerability assessments for two selected species, with two time horizons (2050, 2080) and all four applied SRES scenarios (A1=A1F1, A2, B1, B2).

| Order Species name |            |                 |                 | MO                | DELLED IMP | АСТ   | ADAPTATION                | CONSTRAINTS | VULNERABILITY ASSESSMENT |       |                        |                                 |  |
|--------------------|------------|-----------------|-----------------|-------------------|------------|-------|---------------------------|-------------|--------------------------|-------|------------------------|---------------------------------|--|
| Order              | Species    | English<br>name | Time<br>Horizon | SRE S<br>Scenario | Overlap    | Ratio | General +<br>colonisation | General     | Overlap                  | Ratio | Worst<br>vulnerability | Worst vulnerability<br>category |  |
|                    |            |                 | 2050            | A1                | 0.589      | 0.820 | 0                         | 0           | -1                       | -1    | -1                     | Low                             |  |
|                    |            |                 | 2050            | A2                | 0.646      | 0.881 | 0                         | 0           | -1                       | -1    | -1                     | Low                             |  |
|                    |            |                 | 2050            | B1                | 0.650      | 0.873 | 0                         | 0           | -1                       | -1    | -1                     | Low                             |  |
| Directo            | Aquilegia  |                 | 2050            | B2                | 0.639      | 0.890 | 0                         | 0           | -1                       | -1    | -1                     | Low                             |  |
| Plants             | pyrenaica  |                 | 2080            | A1                | 0.296      | 0.639 | 0                         | 0           | -3                       | -2    | -3                     | High                            |  |
|                    |            |                 | 2080            | A2                | 0.460      | 0.714 | 0                         | 0           | -2                       | -1    | -2                     | Moderate                        |  |
|                    |            |                 | 2080            | B1                | 0.539      | 0.769 | 0                         | 0           | -1                       | -1    | -1                     | Low                             |  |
|                    |            |                 | 2080            | B2                | 0.539      | 0.761 | 0                         | 0           | -1                       | -1    | -1                     | Low                             |  |
|                    |            |                 | 2050            | A1                | 0.561      | 1.010 | 1                         | 1           | -2                       | 0     | -2                     | Moderate                        |  |
|                    |            |                 | 2050            | A2                | 0.675      | 1.090 | 1                         | 1           | -2                       | 0     | -2                     | Moderate                        |  |
|                    |            |                 | 2050            | B1                | 0.696      | 1.146 | 1                         | 1           | -2                       | 0     | -2                     | Moderate                        |  |
| Diante             | Arabis     |                 | 2050            | B2                | 0.645      | 1.113 | 1                         | 1           | -2                       | 0     | -2                     | Moderate                        |  |
| Plants             | scopoliana |                 | 2080            | A1                | 0.349      | 1.163 | 1                         | 1           | -3                       | 0     | -3                     | High                            |  |
|                    |            |                 | 2080            | A2                | 0.671      | 2.014 | 1                         | 1           | -2                       | 3     | -2                     | Moderate                        |  |
|                    |            |                 | 2080            | B1                | 0.621      | 1.335 | 1                         | 1           | -2                       | 1     | -2                     | Moderate                        |  |
|                    |            |                 | 2080            | B2                | 0.563      | 1,197 | 1                         | 1           | -2                       | 0     | -2                     | Moderate                        |  |

Table 10: Vulnerability assessment of breeding birds to climate change (SRES Med-Low B2; Horizon 2070-99). See also Fig. 7 in Task Report 3a.

| Breeding            | birds         |      |  |  |  |
|---------------------|---------------|------|--|--|--|
| Vulnerability       | B2, 2070-2099 |      |  |  |  |
| Category            | n             | %    |  |  |  |
| Extremely Critical  | 2             | 1%   |  |  |  |
| Critical            | 24            | 16%  |  |  |  |
| Very High           | 51            | 34%  |  |  |  |
| High                | 41            | 28%  |  |  |  |
| Moderate            | 22            | 15%  |  |  |  |
| Low                 | 8             | 5%   |  |  |  |
| (Low positive)      | 0             | 0%   |  |  |  |
| (Moderate positive) | 1             | 1%   |  |  |  |
| Total               | 149           | 100% |  |  |  |

Assessment data for reptile and amphibian species were only available for 2050. Variations between the medium-low (B2) and high (A1F1) SRES scenarios are small (see Table 11; see also Figs. 3 and 4 in Task Report 3a). This mirrors trends for other taxa modelled to 2050, where many exhibit 'low' vulnerability to climate change or even 'moderate positive'. For many reptiles and amphibians, there is broad overlap between current and projected climate space, accompanied by moderate to large amounts of newly suitable climate space. These species do not have large dispersal capabilities and have special habitat requirements (e.g. the cave-dwelling Olm, Proteus anguinus) and therefore cannot easily colonise new areas of habitat. Still others have restricted geographic distributions (e.g. Italian Agile Frog Rana latastei) and limited ability to take advantage of potential expansions of suitable climate space. Despite these restrictions, many reptiles and amphibians are not as dependent on specific habitat types as some taxonomic groups such as butterflies, and a small proportion of species might benefit from modest climate warming. These are species that exhibit three characteristics: 1) slight reductions of overlap between current and projected climate space, 2) significant gains in total suitable climate space (i.e. ratio > 100%), and 3) low or no constraints to dispersal; such species are discussed in Section 5.4.

Table 11: Summary of selected vulnerability assessments of reptiles and amphibians to climate<br/>change (SRES Med-Low B2, High A1F1; 2050; SRES A2 and B1 assessments were also<br/>conducted but are not summarised here). See also Figs. 3 and 4 in Task Report 3a.

| Reptiles and amphibians |    |         |            |      |  |  |  |  |  |  |  |
|-------------------------|----|---------|------------|------|--|--|--|--|--|--|--|
| Vulnerability           | B  | 2, 2050 | A1F1, 2050 |      |  |  |  |  |  |  |  |
| Category                | n  | %       | n          | %    |  |  |  |  |  |  |  |
| Extremely Critical      | 0  | 0%      | 0          | 0%   |  |  |  |  |  |  |  |
| Critical                | 0  | 0%      | 0          | 0%   |  |  |  |  |  |  |  |
| Very High               | 1  | 4%      | 1          | 4%   |  |  |  |  |  |  |  |
| High                    | 6  | 25%     | 9          | 38%  |  |  |  |  |  |  |  |
| Moderate                | 4  | 17%     | 2          | 8%   |  |  |  |  |  |  |  |
| Low                     | 10 | 42%     | 9          | 38%  |  |  |  |  |  |  |  |
| (Low positive)          | 0  | 0%      | 0          | 0%   |  |  |  |  |  |  |  |
| (Moderate positive)     | 3  | 13%     | 3          | 13%  |  |  |  |  |  |  |  |
| Total                   | 24 | 100%    | 24         | 100% |  |  |  |  |  |  |  |

Assessment data for butterflies were available for both the 2050s and 2080s. Small but noticeable trends were observed between the low (B1) and high (A1F1) SRES scenarios for both time horizons (see Table 12; see also Fig. 5 in Task Report 3a). Trends for butterflies are similar to other taxa modelled to 2050, where the majority exhibit 'low' or 'moderate' vulnerability to climate change. By 2080, increasing numbers of species exhibit a 'high' to 'critical' vulnerability. Interestingly, by 2080 a few species score 'low positive' to climate change, suggesting that they may be adaptable enough to cope with significant environmental change. However, there were insufficient data to adequately assess the degree of overlap between current and projected suitable climate space and, as such, it is difficult to make firm conclusions about the amount of dispersal required to move to new areas. Generalist species (e.g. *Lycaena dispar*) with minimal habitat or food plant dependencies might expand their ranges in response to climate change, while species restricted to particular habitats (e.g. *Erebia medusa polaris*) or with dependencies on plant species impacted by climate change may continue to decline.

|                     | Butterflies |                 |    |      |     |            |    |      |  |  |  |  |  |
|---------------------|-------------|-----------------|----|------|-----|------------|----|------|--|--|--|--|--|
| Vulnerability       | 1, 2050     | 2050 A1F1, 2050 |    |      | 080 | A1F1, 2080 |    |      |  |  |  |  |  |
| Category            | n           | % n             |    | %    | n   | %          | n  | %    |  |  |  |  |  |
| Extremely Critical  | 0           | 0%              | 0  | 0%   | 0   | 0%         | 0  | 0%   |  |  |  |  |  |
| Critical            | 0           | 0%              | 0  | 0%   | 0   | 0%         | 1  | 8%   |  |  |  |  |  |
| Very High           | 0           | 0%              | 1  | 8%   | 1   | 8%         | 1  | 8%   |  |  |  |  |  |
| High                | 2           | 15%             | 3  | 23%  | 3   | 23%        | 5  | 38%  |  |  |  |  |  |
| Moderate            | 5           | 38%             | 3  | 23%  | 3   | 23%        | 3  | 23%  |  |  |  |  |  |
| Low                 | 6           | 46%             | 5  | 38%  | 3   | 23%        | 1  | 8%   |  |  |  |  |  |
| (Low positive)      | 0           | 0%              | 1  | 8%   | 3   | 23%        | 2  | 15%  |  |  |  |  |  |
| (Moderate positive) | 0           | 0%              | 0  | 0%   | 0   | 0%         | 0  | 0%   |  |  |  |  |  |
| Total               | 13          | 100%            | 13 | 100% | 13  | 100%       | 13 | 100% |  |  |  |  |  |

Table 12: Summary of selected vulnerability assessments of butterflies to climate change (SRES Low B1, High A1F1; 2050, 2080). See also Fig. 5 in Task Report 3a.

**Assessment data for vascular plants** were available for both the 2050s and 2080s. Small but noticeable trends were observed from the medium-low (B2) to high (A1F1) SRES scenarios for both time horizons (see Table 13; see also Fig. 6 in Task Report 3a). Again, these trends were similar to other taxa modelled to 2050, with the majority showing 'low' vulnerability to climate change. Trends by 2080 shift towards 'moderate' to high' vulnerability, with some species that exhibit a 'moderate positive' in the 2050s and under the medium-low (B2) SRES scenario for the 2080s becoming vulnerable under the high (A1F1) scenario. Many species exhibited small to moderate declines in overlap between existing and

projected suitable climate space and, in some instances, significant increases in overall suitable climate space. However, data were not available to support the assessment of dispersal ability or to assess the importance of temperature cues for essential physiological processes.

| Vascular plants     |    |         |      |        |       |      |            |      |  |  |  |  |
|---------------------|----|---------|------|--------|-------|------|------------|------|--|--|--|--|
| Vulnerability       | В  | 2, 2050 | A1F1 | , 2050 | B2, 2 | 080  | A1F1, 2080 |      |  |  |  |  |
| Category            | n  | %       | n    | %      | n     | %    | n          | %    |  |  |  |  |
| Extremely Critical  | 0  | 0%      | 0    | 0%     | 0     | 0%   | 0          | 0%   |  |  |  |  |
| Critical            | 0  | 0%      | 0    | 0%     | 0     | 0%   | 0          | 0%   |  |  |  |  |
| Very High           | 0  | 0%      | 0    | 0%     | 1     | 4%   | 2          | 8%   |  |  |  |  |
| High                | 2  | 8%      | 2    | 8%     | 2     | 8%   | 10         | 38%  |  |  |  |  |
| Moderate            | 3  | 12%     | 8    | 31%    | 7     | 27%  | 9          | 35%  |  |  |  |  |
| Low                 | 17 | 65%     | 13   | 50%    | 12    | 46%  | 5          | 19%  |  |  |  |  |
| (Low positive)      | 0  | 0%      | 0    | 0%     | 0     | 0%   | 0          | 0%   |  |  |  |  |
| (Moderate positive) | 4  | 15%     | 3    | 12%    | 4     | 15%  | 0          | 0%   |  |  |  |  |
| Total               | 26 | 100%    | 26   | 100%   | 26    | 100% | 26         | 100% |  |  |  |  |

Table 13: Summary of selected vulnerability assessments of vascular plants to climate change<br/>(SRES Med-Low B2, High A1F1; 2050, 2080). See also Fig. 6 in Task Report 3a.

#### 5.4 Species that may benefit from climate change

Whilst the purpose of this study was to identify and assess the vulnerability of species of Community Interest to climate change, the assessment process also ranked some species as "low positive" or "moderate positive", i.e. species that may benefit from climate change.

The individual species that were ranked "low positive" or "moderate positive" can be identified in the Annexes in the far right column, and are extracted again in Table 14.

| Table 14: Assessed species across all taxa groups ranked either "low positive" or "moderate     |
|-------------------------------------------------------------------------------------------------|
| positive" (potentially benefitting from climate change), with the respective SRES scenarios and |
| time horizons.                                                                                  |

| Taxon Group     | Species               | SRES                | Time<br>Horizon |
|-----------------|-----------------------|---------------------|-----------------|
| Birds           | Alcedo atthis         | B2                  | 2070-2099       |
| Reptiles        | Lacerta schreiberi    | A1F1, A2, B1,<br>B2 | 2050            |
|                 | Coenonympha oedippus  | A1F1, A2, B1        | 2080            |
| Buttorflice     | Erebia medusa polaris | A2, B1              | 2080            |
| Dutternies      | Melanargia arge       | A1F1, A2, B1        | 2080            |
|                 | Plebejus grandon      | A1F1                | 2050            |
|                 | Asplenium adulterinum | B1                  | 2050            |
|                 | Dianthus rupicola     | A1F1, A2, B1,<br>B2 | 2050            |
|                 |                       | A2, B1, B2          | 2080            |
| Vegguler plante | Hemiaria latifolia    | A1F1, A2, B1,<br>B2 | 2050            |
| vascular plants |                       | A2, B1, B2          | 2080            |
|                 | Paeonia oficinalis    | A1F1, A2, B1,<br>B2 | 2050            |
|                 |                       | A2, B1, B2          | 2080            |
|                 | Sisymbrium supinum    | A2, B1, B2          | 2050            |
|                 |                       | A2, B1, B2          | 2080            |

The impact assessment for reptiles and amphibians identified examples of high levels of overlap and relative increases in potential suitable climate space, with implicit potential benefits for the species concerned. This was mirrored in the vulnerability assessment, where 12.5% of species were ranked "moderate positive" under both the medium-low (B2) and high (A1F1) SRES scenarios for the 2050s.

Similarly for butterflies, where 23% of species assessed were ranked "low positive" under the low (B1) SRES scenario for the 2080s and 15% under the high (A1F1) scenario.

For vascular plants, 15% scored "moderate positive" under the medium-low (B2) SRES scenario for the 2050s and 2080s, and 11.5% under the high (A1F1) scenario for the 2080s.

However, the breeding birds that were assessed in the study did not follow these trends; only one species (<1%) was ranked "moderate positive" under the medium-low (B2) SRES scenario for 2100.

## 6 Discussion

This study has developed and applied an approach for assessing the overall vulnerability of species to projected changes in climate. The vulnerability assessments go beyond the estimation of potential impacts (i.e. the combined effects of exposure and sensitivity), which have been published for various taxa, by additionally considering each species' adaptive capacity. Thus the results provide for the first time a more complete, though preliminary, assessment of the effects of climate change on species populations.

It is, therefore, of considerable concern that the results show that the vast majority of species from each taxonomic group are likely to be vulnerable to some extent. In other words, it appears that very few species of Community Interest are likely to benefit overall from climate change, even when the modelled projections suggest there will be an expansion in their suitable climate space. This is because areas of potentially suitable climate space progressively move away from currently inhabited areas; species will therefore need to move to and colonise new areas of climate space. For most species, the projected impacts from a reduction in suitable climate space are likely to be smaller than those from a reduction in overlap.

The assessments show that **vulnerability primarily arises because many species will be constrained in their ability to move to and colonise new areas with suitable climate** (e.g. because of limited dispersal abilities, lack of suitable habitat, or low levels of emigration due to small population sizes etc). In fact, as a result of such constraints, this study suggests that a **significant proportion of species of Community Interest have a high or greater level of vulnerability** to climate change (particularly for projections beyond 2080). To some extent this is not surprising, as most species of Community Interest are rare and have specific habitat requirements or are otherwise threatened. Furthermore, evidence from Article 17 assessments under the Habitats Directive indicates that a large proportion of species of Community Interest currently have unfavourable conservation status<sup>4</sup>. Monitoring data for birds (BirdLife International, 2004a,b) shows a similar situation for those listed in Annex 1 of the Birds Directive, even though there is evidence that the Directive has had some beneficial impacts (Donald *et al.*, 2007).

The availability of suitable habitat within new areas of suitable climate is likely to be a particular problem for species of Community Interest. Many of such species are habitat specialists and are already constrained by habitat availability and/or condition; climate change is likely to exacerbate such threats, rather than create new opportunities. The protection of Natura 2000 sites that currently provide suitable habitat for such species should therefore be a priority (this is examined further in Task 3a). However, as described in the review of adaptation principles (see Task Report 2b & 3b, Section 2), it will be equally important to improve the resilience of existing populations by improved management of habitats, and where necessary expansion and reconnection of habitats to create a functionally coherent network. Such measures will also support the redistribution of species, which is likely to become increasingly important in the longer-term.

The results of this task should, however, be treated with some caution. This is firstly because there are many uncertainties and limitations concerning the use of climate models in projecting impacts on biodiversity (Ad Hoc Technical Expert Group on Biodiversity and Climate Change, 2008). Given that ecological constraints and limiting factors are prone to be species-specific, modelling and the underlying standardised climate variables can only provide an approximation to real impact experienced by a particular species or habitat. Secondly, and more importantly, this vulnerability assessment is of a preliminary nature as it

<sup>&</sup>lt;sup>4</sup> The Article 17 assessment do not cover birds

has essentially relied on an expert-based subjective assessment of adaptation constraints. There is little information on the actual relationships between adaptation constraints and adaptation responses are largely unknown. Thus the scoring systems and thresholds for each category of vulnerability are arbitrary and they cannot be calibrated against projected changes in population or range.

It is, therefore, suggested that further research is needed to link species climate models with models of dispersal probability and currently and potentially available habitat. Although some research has been conducted using a similar approach (Vos *et al.*, 2008) this needs to be extended to more species and wider areas, and underpinned by more detailed ecologically meaningful spatial habitat data. Such studies also need to take into account the potential time lags between habitat establishment and species' needs for suitable habitats as they move to new areas of climate space.

## 7 References

- Ad Hoc Technical Expert Group on Biodiversity and Climate Change (2008). Tools and methodologies for assessing the impacts on and vulnerabilities of biodiversity as a result of climate change. CBD Secretariat.
- Araújo, M. B., Thuiller, W. & Pearson, R.G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33: 1712-1728.
- Berry, P.M., Harrison, P.A., Dawson, T.P. and Walmsley, C.A. (Eds.) (2005). Modelling Natural Resource Responses to Climate Change (MONARCH): A Local Approach. UKCIP Technical Report, Oxford.
- Berry, P.M., O'Hanley, J.R., Thomson, C.L., Harrison, P.A., Masters G.J. and T.P. Dawson (Eds.) (2007) Modelling Natural Resource Responses to Climate Change (MONARCH): A Local Approach. UKCIP Technical Report, Oxford.
- Berry, P.M., Jones, A.P., Nicholls, R.J. and Vos, C.C. (eds.) (2007a). Assessment of the vulnerability of terrestrial and coastal habitats and species in Europe to climate change, Annex 2 of Planning for biodiversity in a changing climate – BRANCH project Final Report, Natural England, UK.
- Berry P.M. (2004). Plant vulnerability to climate change. In Yearbook of Science and Technology, McGraw-Hill, New York, pp259-261.
- Berry, P. (2008). Climate change and the vulnerability of Bern Convention species and habitats. Council of Europe, Strasbourg.
- BirdLife International (2004a). Birds in Europe: population estimates, trends and conservation status. BirdLife International, Cambridge.
- BirdLife International (2004b). Birds in the European Union: a status assessment. BirdLife International, Wageningen, The Netherlands.
- Donald, P.F., Sanderson, F.J., Burfield, I.J., B., S.M., Gregory, R.D., & Waliczky, Z. (2007) International conservation policy delivers benefits for birds in Europe. Science, 317, 810-813.
- EEA. (2004). Impacts of Europe's Changing Climate. An indicator-based assessment. European Environment Agency, Copenhagen.
- Foden, W., Mace, G., Vié, J.-C., Angulo, A., Butchart, S., DeVantier, L., Dublin, H., Gutsche, A., Stuart, S. & Turak, E. (2008). Species susceptibility to climate change impacts. In: Vié, J.-C., Hilton-Taylor, C. & Stuart, S.N. (eds). The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland, 12pp.
- Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B. and Wood, R.A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics **16**: 147–168.
- Harrison, P.A., Berry, P.M. and Dawson, T.P. (Eds.) (2001). Climate Change and Nature Conservation in Britain and Ireland: Modelling natural resource responses to climate change (the MONARCH project). UKCIP Technical Report, Oxford.

- Hickling, R., Roy, D. B., Hill, J. K., Fox, R. and Thomas, C. D. (2006). The distribution of a wide range of taxanomic groups are expanding northwards. Global Change Biology 12: 450-455.
- Hill, J.K., Collingham, Y.C., Thomas, C.D., Blakeley, D.S., Fox, R., Moss, D., & Huntley, B. (2001) Impacts of landscape structure on butterfly range expansion, Ecology Letters, 4, 313-321.
- Hill, J.K., Thomas, C.D., Fox, R., Telfer, M.G., Willis, S.G., Asher, J., & Huntley, B. (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proceedings of the Royal Society of London Series B, 269, 2163-2171.
- Hossell, J., Briggs B. and Hepburn I.R. (2000) Climate Change and Nature Conservation. DETR, London.
- Huntley, B., Green, R.E., Collingham, Y.C. & Willis, S.G. (2007). A climatic atlas of European breeding birds. Lynx Edicions, Barcelona.
- IPCC (2000). Emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
- IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
- IUCN (2001). IUCN Red List Categories and Criteria. International Union for Conservation of Nature and Natural Resources, Species Survival Commission, Cambridge, U.K. Version 3.1.
- IUCN (2004). Global action for nature in a changing climate. Conclusions of a meeting of IUCN's Climate Change Adaptation Working Group convened by Conservation International, English Nature, IUCN, The Nature Conservancy, RSPB, Woodland Trust, WWF. IUCN-The World Conservation Union, Gland, Switzerland.
- Jenkins, G. & Lowe, J. (2003). Handling uncertainties in the UKCIP02 scenarios of climate change. Hadley Centre Technical Note 44, Exeter.
- Pearson, R.G. & Dawson, T.P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361-371.
- Pearson, R.G., Thuiller, W., Araújo, M.B., Brotons, L., Martinez-Meyer, E., McClean, C., Miles, L., Segurado, P., Dawson, T.P.& Lees, D. (2006). Model-based uncertainty in species' range prediction. Journal of Biogeography, 33, 1704-1711.
- Settele, J., Kudrna, O., Harpke, A., Kuhn, I., van Sway, C., Verovnik, R., Warren, M., Wiemers, M., Hanspach, J., Hickler, T., Kuhn, E., van Halder, I., Veling, K., Vliegnethart, A., Wynhoff, I. & Schweiger, O. (2008). Climatic risk atlas of European butterflies. Pensoft, Sofia.
- Thuiller, W. (2004). Patterns and uncertainties of species' range shifts under climate change. Global Change Biology 10: 2020-2027.

- Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M. & Prentice, I.C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, USA 102: 8245-8250.
- Vos, C.C., Berry, P., Opdam, P., Baveco, H., Nijhof, B., O'Hanley, J., Bell, C., & Kuipers, H. (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. Journal of Applied Ecology, 45, 1722-1731.
- WGBU. (2003). Climate Protection Strategies for the 21st Century: Kyoto and beyond. Special report, pp89.
- Williams, J.W. & Jackson, S.T. (2007) Novel climates, non-analog communities and ecological surprises. Frontiers in Ecology and the Environment, 5, 475-482.

## 8 Appendices

Appendix 1: Vulnerability assessment tables: breeding birds

Appendix 2: Vulnerability assessment tables: reptiles and amphibians

Appendix 3: Vulnerability assessment tables: butterflies

Appendix 4: Vulnerability assessment tables: vascular plants

## **Appendix 1: Breeding birds**

Model based vulnerability assessment for breeding birds in the EU listed on Annex I of the Birds Directive.

|                  |                                          |                                            |                 | MOD              | ELLED IMP | ACT   | ADAPTATION                | CONSTRAINTS | VULNERABILITY ASSESS |       |                        | MENT                               |
|------------------|------------------------------------------|--------------------------------------------|-----------------|------------------|-----------|-------|---------------------------|-------------|----------------------|-------|------------------------|------------------------------------|
| Order            | Species                                  | English name                               | Time<br>Horizon | SRES<br>Scenario | Overlap   | Ratio | General +<br>colonisation | General     | Overlap              | Ratio | Worst<br>vulnerability | Worst<br>vulnerability<br>category |
| ANSERIFORMES     | Anser erythropus                         | Lesser White-fronted Goose                 | 2070-99         | B2               | 0.06      | 0.06  | 2                         | 2           | -5                   | -6    | -6                     | Extremely critical                 |
| ANSERIFORMES     | Aythya nyroca                            | Ferruginous Duck                           | 2070-99         | B2               | 0.23      | 1.00  | 1                         | 1           | -4                   | 0     | -4                     | Very High                          |
| ANSERIFORMES     | Branta leucopsis                         | Barnacle Goose                             | 2070-99         | B2               | 0.06      | 0.19  | 1                         | 1           | -4                   | -5    | -5                     | Critical                           |
| ANSERIFORMES     | Cygnus bewickii                          | Tundra Swan                                | 2070-99         | B2               | 0.11      | 0.11  | 0                         | 0           | -3                   | -4    | -4                     | Very High                          |
| ANSERIFORMES     | Cygnus cygnus                            | Whooper Swan                               | 2070-99         | B2               | 0.39      | 0.47  | 1                         | 1           | -3                   | -4    | -4                     | Very High                          |
|                  | Marmaronetta angustirostris              | Marbled Teal                               | 2070-99         | B2<br>B2         | 0.00      | 2.33  | 1                         | 1           | -4                   | 3     | -4                     | Critical                           |
| ANSERIFORMES     | Oxvura leucocephala                      | White-headed Duck                          | 2070-99         | B2               | 0.04      | 0.00  | 1                         | 1           | -4                   | -5    | -5                     | Critical                           |
| ANSERIFORMES     | Tadorna ferruginea                       | Ruddy Shelduck                             | 2070-99         | B2               | 0.19      | 1.01  | 1                         | 1           | -4                   | 0     | -4                     | Very High                          |
| APODIFORMES      | Apus caffer                              | White-rumped Swift                         | 2070-99         | B2               | 0.00      | 1.27  | 0                         | 0           | -3                   | 1     | -3                     | High                               |
| CAPRIMULGIFORMES | Caprimulgus europaeus                    | Eurasian Nightjar                          | 2070-99         | B2               | 0.57      | 0.87  | 1                         | 1           | -2                   | -2    | -2                     | Moderate                           |
| CHARADRIIFORMES  | Burhinus oedicnemus                      | Eurasian Thick-knee                        | 2070-99         | B2               | 0.31      | 0.90  | 1                         | 1           | -3                   | -2    | -3                     | High                               |
| CHARADRIIFORMES  | Charadrius alexandrinus                  | Kentish Plover                             | 2070-99         | B2               | 0.54      | 1.56  | 1                         | 1           | -2                   | 2     | -2                     | Moderate                           |
| CHARADRIIFORMES  | Charadrius morinellus                    | Eurasian Dotterel                          | 2070-99         | B2               | 0.23      | 0.43  | 1                         | 1           | -4                   | -4    | -4                     | Very High                          |
|                  | Chlidonias hybridus<br>Chlidonias nigor  | Whiskered Lern                             | 2070-99         | B2<br>B2         | 0.15      | 0.71  | 0                         | 0           | -3                   | -1    | -3                     | High                               |
| CHARADRIIFORMES  | Gallinado media                          | Great Snipe                                | 2070-99         | B2               | 0.13      | 0.38  | 1                         | 1           | -4                   | -3    | -4                     | Very High                          |
| CHARADRIIFORMES  | Gelochelidon nilotica                    | Gull-billed Tern                           | 2070-99         | B2               | 0.03      | 1.13  | 1                         | 1           | -4                   | 0     | -4                     | Very High                          |
| CHARADRIIFORMES  | Glareola pratincola                      | Collared Pratincole                        | 2070-99         | B2               | 0.15      | 1.24  | 1                         | 1           | -4                   | 0     | -4                     | Very High                          |
| CHARADRIIFORMES  | Himantopus himantopus                    | Black-winged Stilt                         | 2070-99         | B2               | 0.28      | 1.05  | 0                         | 0           | -3                   | 1     | -3                     | High                               |
| CHARADRIIFORMES  | Larus audouinii                          | Audouin's Gull                             | 2070-99         | B2               | 0.00      | 0.14  | 1                         | 1           | -4                   | -5    | -5                     | Critical                           |
| CHARADRIIFORMES  | Larus melanocephalus                     | Mediterranean Gull                         | 2070-99         | B2               | 0.07      | 0.72  | 1                         | 1           | -4                   | -2    | -4                     | Very High                          |
| CHARADRIIFORMES  | Larus minutus                            | Little Gull                                | 2070-99         | B2               | 0.33      | 0.60  | 0                         | 0           | -2                   | -2    | -2                     | Moderate                           |
| CHARADRIIFORMES  | Limosa lapponica                         | Bar-tailed Godwit                          | 2070-99         | B2               | 0.08      | 0.25  | 1                         | 1           | -4                   | -5    | -5                     | Critical                           |
|                  | Phalaropus lobatus<br>Philomachus pugnay | Red-necked Phalarope                       | 2070-99         | B2<br>B2         | 0.25      | 0.34  | 0                         | 0           | -3                   | -3    | -3                     | High                               |
| CHARADRIIFORMES  | Pluvialis apricaria                      | Furasian Golden-plover                     | 2070-99         | B2               | 0.42      | 0.61  | 0                         | 0           | -3                   | -3    | -3                     | Moderate                           |
| CHARADRIIFORMES  | Recurvirostra avosetta                   | Pied Avocet                                | 2070-99         | B2               | 0.17      | 0.52  | 0                         | 0           | -3                   | -2    | -3                     | High                               |
| CHARADRIIFORMES  | Sterna albifrons                         | Little Tern                                | 2070-99         | B2               | 0.17      | 0.71  | 1                         | 1           | -4                   | -2    | -4                     | Very High                          |
| CHARADRIIFORMES  | Sterna caspia                            | Caspian Tern                               | 2070-99         | B2               | 0.17      | 0.51  | 1                         | 1           | -4                   | -3    | -4                     | Very High                          |
| CHARADRIIFORMES  | Sterna dougallii                         | Roseate Tern                               | 2070-99         | B2               | 0.41      | 1.04  | 1                         | 1           | -3                   | 0     | -3                     | High                               |
| CHARADRIIFORMES  | Sterna hirundo                           | Common Tern                                | 2070-99         | B2               | 0.55      | 0.71  | 0                         | 0           | -1                   | -1    | -1                     | Low                                |
| CHARADRIIFORMES  | Sterna paradisaea                        | Arctic Tern                                | 2070-99         | B2               | 0.39      | 0.43  | 1                         | 1           | -3                   | -4    | -4                     | Very High                          |
| CHARADRIIFORMES  | Sterna sandvicensis                      | Sanwich Tern                               | 2070-99         | B2<br>B2         | 0.30      | 0.63  | 1                         | 1           | -3                   | -3    | -3                     | High                               |
|                  | Tringa giareola<br>Xenus cinereus        | Vvood Sandpiper<br>Terek Sandpiper         | 2070-99         | B2<br>B2         | 0.50      | 0.56  | 0                         | 0           | -1                   | -2    | -2                     | Critical                           |
| CICONIIFORMES    | Ardea purpurea                           | Purple Heron                               | 2070-99         | B2               | 0.27      | 1.27  | 1                         | 1           | -4                   | 0     | -4                     | Very High                          |
| CICONIIFORMES    | Ardeola ralloides                        | Squacco Heron                              | 2070-99         | B2               | 0.03      | 1.30  | 1                         | 1           | -4                   | 1     | -4                     | Very High                          |
| CICONIIFORMES    | Botaurus stellaris                       | Bittern                                    | 2070-99         | B2               | 0.34      | 0.75  | 1                         | 1           | -3                   | -2    | -3                     | High                               |
| CICONIIFORMES    | Ciconia ciconia                          | White Stork                                | 2070-99         | B2               | 0.49      | 0.94  | 0                         | 0           | -2                   | -1    | -2                     | Moderate                           |
| CICONIIFORMES    | Ciconia nigra                            | Black Stork                                | 2070-99         | B2               | 0.40      | 1.02  | 1                         | 1           | -3                   | 0     | -3                     | High                               |
| CICONIIFORMES    | Egretta alba (Ardea alba)                | Great White Egret                          | 2070-99         | B2               | 0.12      | 0.39  | 1                         | 1           | -4                   | -4    | -4                     | Very High                          |
| CICONIFORMES     | Egretta garzetta                         | Little Egret                               | 2070-99         | B2               | 0.13      | 1.30  | 0                         | 0           | -3                   | 2     | -3                     | High                               |
|                  | Ixobrychus minutus                       | Little Bittem<br>Black-crowned Night-beron | 2070-99         | B2<br>B2         | 0.60      | 1.25  | 0                         | 0           | -2                   | 1     | -2                     | High                               |
| CICONIIFORMES    | Platalea leucorodia                      | Eurasian Spoonbill                         | 2070-99         | B2               | 0.01      | 0.92  | 1                         | 1           | -4                   | -2    | -4                     | Very High                          |
| CICONIIFORMES    | Plegadis falcinellus                     | Glossy Ibis                                | 2070-99         | B2               | 0.02      | 0.85  | 1                         | 1           | -4                   | -2    | -4                     | Very High                          |
| CORACIIFORMES    | Alcedo atthis                            | Kingfisher                                 | 2070-99         | B2               | 0.79      | 1.13  | 0                         | 0           | 0                    | 1     | 0                      | Moderate positive                  |
| CORACIIFORMES    | Coracias garrulus                        | European Roller                            | 2070-99         | B2               | 0.41      | 0.88  | 1                         | 1           | -3                   | -2    | -3                     | High                               |
| FALCONIFORMES    | Accipiter brevipes                       | Levant Sparrowhawk                         | 2070-99         | B2               | 0.29      | 1.14  | 1                         | 1           | -4                   | 0     | -4                     | Very High                          |
|                  | Aegypius monachus                        | Cinereous Vulture                          | 2070-99         | B2               | 0.07      | 1.43  | 2                         | 1           | -5                   | 1     | -5                     | Critical                           |
|                  | Aquila adalberti<br>Aquila christootos   | Spanish Imperial Eagle                     | 2070-99         | B2<br>B2         | 0.00      | 1.65  | 2                         | 1           | -5<br>-4             | 2     | -5                     | Von High                           |
| FALCONIFORMES    | Aquila chi ysaetos<br>Aquila clanga      | Greater Spotted Fadle                      | 2070-99         | B2               | 0.00      | 0.03  | 2                         | 2           | -4                   | -2    | -4<br>-6               | Extremely critical                 |
| FALCONIFORMES    | Aquila heliaca                           | Imperial Eagle                             | 2070-99         | B2               | 0.05      | 0.87  | 2                         | 1           | -5                   | -2    | -5                     | Critical                           |
| FALCONIFORMES    | Aquila pomarina                          | Lesser Spotted Eagle                       | 2070-99         | B2               | 0.22      | 0.96  | 1                         | 1           | -4                   | -2    | -4                     | Very High                          |
| FALCONIFORMES    | Buteo rufinus                            | Long-legged Buzzard                        | 2070-99         | B2               | 0.31      | 2.36  | 1                         | 1           | -3                   | 3     | -3                     | High                               |
| FALCONIFORMES    | Circaetus gallicus                       | Short-toed Snake-eagle                     | 2070-99         | B2               | 0.38      | 1.14  | 1                         | 1           | -3                   | 0     | -3                     | High                               |
| FALCONIFORMES    | Circus aeruginosus                       | Western Marsh-harrier                      | 2070-99         | B2               | 0.56      | 0.89  | 0                         | 0           | -1                   | -1    | -1                     | Low                                |
| FALCONIFORMES    | Circus cyaneus                           | Northern Harrier                           | 2070-99         | B2               | 0.38      | 0.51  | 1                         | 1           | -3                   | -3    | -3                     | High                               |
|                  | Circus macrourus                         | Pallid Harrier                             | 2070-99         | B2<br>B2         | 0.02      | 0.06  | 2                         | 1           | -5                   | -5    | -5                     | Critical                           |
| FALCONIFORMES    | Elanus caeruleus                         | Black-winged Kite                          | 2070-99         | B2<br>B2         | 0.029     | 1.09  | 1                         | 1           | -3<br>-4             | -1    | -3<br>-4               | Very High                          |
| FALCONIFORMES    | Falco biarmicus                          | Lanner Falcon                              | 2070-99         | B2               | 0.02      | 1.85  | 1                         | 1           | -4                   | 3     | -4                     | Very High                          |
| FALCONIFORMES    | Falco cherrug                            | Saker Falcon                               | 2070-99         | B2               | 0.11      | 0.72  | 2                         | 2           | -5                   | -3    | -5                     | Critical                           |
| FALCONIFORMES    | Falco columbarius                        | Merlin                                     | 2070-99         | B2               | 0.39      | 0.56  | 1                         | 1           | -3                   | -3    | -3                     | High                               |
| FALCONIFORMES    | Falco eleonorae                          | Eleonora's Falcon                          | 2070-99         | B2               | 0.36      | 2.94  | 1                         | 1           | -3                   | 3     | -3                     | High                               |
| FALCONIFORMES    | Falco naumanni                           | Lesser Kestrel                             | 2070-99         | B2               | 0.70      | 1.49  | 1                         | 1           | -1                   | 1     | -1                     | Low                                |
| FALCONIFORMES    | Falco peregrinus                         | Peregrine Falcon                           | 2070-99         | B2               | 0.53      | 1.06  | 0                         | 0           | -1                   | 1     | -1                     | Low                                |
|                  | Falco vosportinus                        | Gynalcon<br>Red feeted Felcer              | 2070-99         | B2<br>B2         | 0.10      | 0.37  | 1                         | 1           | -4                   | -4    | -4                     | Very High                          |
| ALCONI ORIVIES   | aloo vesperunus                          | INGU TOULOU F AIGUIT                       | 2010-99         | 20               | 0.19      | 0.01  |                           | 1           | -4                   | -3    | -4                     | Very Flight                        |

|                     |                           |                           |         | MOD      | ELLED IMP | ACT   | ADAPTATION | CONSTRAINTS |         | VULNERABILITY ASSESSME |       |               |  |
|---------------------|---------------------------|---------------------------|---------|----------|-----------|-------|------------|-------------|---------|------------------------|-------|---------------|--|
|                     |                           |                           |         | 0050     |           |       |            |             | Ward    |                        | Worst |               |  |
| Order               | Species                   | English name              | Time    | SRES     | Overlan   | Ratio | General +  | General     | Overlan | Ratio                  | Worst | vulnerability |  |
| FALCONIFORMES       | Gypaetus barbatus         | Lammergeier               | 2070-99 | B2       | 0.09      | 0.46  | 2          | 2           | -5      | -5                     | -5    | Critical      |  |
| FALCONIFORMES       | Gyps fulvus               | Eurasian Griffon          | 2070-99 | B2       | 0.19      | 0.38  | 1          | 1           | -4      | -4                     | -4    | Very High     |  |
| FALCONIFORMES       | Haliaeetus albicilla      | White-tailed Eagle        | 2070-99 | B2       | 0.19      | 0.55  | 1          | 1           | -4      | -3                     | -4    | Very High     |  |
| FALCONIFORMES       | Hieraaetus fasciatus      | Bonelli's Eagle           | 2070-99 | B2       | 0.52      | 1.33  | 2          | 2           | -3      | 0                      | -3    | High          |  |
| FALCONIFORMES       | Hieraaetus pennatus       | Booted Eagle              | 2070-99 | B2       | 0.25      | 0.79  | 1          | 1           | -4      | -2                     | -4    | Very High     |  |
| FALCONIFORMES       | Milvus migrans            | Black Kite                | 2070-99 | B2       | 0.49      | 0.84  | 0          | 0           | -2      | -1                     | -2    | Moderate      |  |
| FALCONIFORMES       | Milvus milvus             | Red Kite                  | 2070-99 | B2       | 0.14      | 0.58  | 0          | 0           | -3      | -2                     | -3    | High          |  |
| FALCONIFORMES       | Neophron percnopterus     | Egyptian Vulture          | 2070-99 | B2       | 0.30      | 0.97  | 2          | 2           | -4      | -3                     | -4    | Very High     |  |
| FALCONIFORMES       | Pandion haliaetus         | Osprey                    | 2070-99 | B2       | 0.48      | 0.58  | 1          | 1           | -3      | -3                     | -3    | High          |  |
| FALCONIFORMES       | Pernis apivorus           | European Honey-buzzard    | 2070-99 | B2       | 0.62      | 0.82  | 0          | 0           | -1      | -1                     | -1    | Low           |  |
| GALLIFORMES         | Alectoris barbara         | Barbary Partridge         | 2070-99 | B2       | 0.00      | 0.00  | 1          | 1           | -4      | -5                     | -5    | Critical      |  |
| GALLIFORMES         | Alectoris graeca          | Rock Partridge            | 2070-99 | B2       | 0.16      | 1.95  | 1          | 1           | -4      | 3                      | -4    | Very High     |  |
| GALLIFORMES         | Bonasa bonasia            | Hazel Grouse              | 2070-99 | B2<br>B2 | 0.56      | 0.68  | 1          | 1           | -2      | -3                     | -3    | High          |  |
| GALLIFORMES         | Tetrao urogallus          | Caparcaillia              | 2070-99 | B2<br>B2 | 0.54      | 0.62  | 1          | 1           | -2      | -3                     | -3    | High          |  |
| GAVIEORMES          | Gavia arctica             | Black-throated Diver      | 2070-99 | B2       | 0.46      | 0.55  | 0          | 0           | -2      | -2                     | -2    | Moderate      |  |
| GAVIIFORMES         | Gavia stellata            | Red-throated Diver        | 2070-99 | B2       | 0.46      | 0.54  | 0          | 0           | -2      | -2                     | -2    | Moderate      |  |
| GRUIFORMES          | Crex crex                 | Corncrake                 | 2070-99 | B2       | 0.47      | 0.71  | 1          | 1           | -3      | -2                     | -3    | High          |  |
| GRUIFORMES          | Fulica cristata           | Red-knobbed Coot          | 2070-99 | B2       | 0.00      | 1.67  | 1          | 1           | -4      | 2                      | -4    | Very High     |  |
| GRUIFORMES          | Grus grus                 | Common Crane              | 2070-99 | B2       | 0.46      | 0.58  | 1          | 1           | -3      | -3                     | -3    | High          |  |
| GRUIFORMES          | Otis tarda                | Great Bustard             | 2070-99 | B2       | 0.05      | 0.34  | 2          | 1           | -5      | -4                     | -5    | Critical      |  |
| GRUIFORMES          | Porphyrio porphyrio       | Purple Swamphen           | 2070-99 | B2       | 0.00      | 0.34  | 1          | 1           | -4      | -4                     | -4    | Very High     |  |
| GRUIFORMES          | Porzana parva             | Little Crake              | 2070-99 | B2       | 0.21      | 0.65  | 0          | 0           | -3      | -2                     | -3    | High          |  |
| GRUIFORMES          | Porzana porzana           | Spotted Crake             | 2070-99 | B2       | 0.33      | 0.62  | 0          | 0           | -2      | -2                     | -2    | Moderate      |  |
| GRUIFORMES          | Porzana pusilla           | Baillon's Crake           | 2070-99 | B2       | 0.00      | 0.22  | 1          | 1           | -4      | -5                     | -5    | Critical      |  |
| GRUIFORMES          | Tetrax tetrax             | Little Bustard            | 2070-99 | B2       | 0.14      | 0.61  | 1          | 1           | -4      | -3                     | -4    | Very High     |  |
| PASSERIFORMES       | Acrocephalus melanopogon  | Moustached Warbler        | 2070-99 | B2       | 0.04      | 1.80  | 0          | 0           | -3      | 4                      | -3    | High          |  |
| PASSERIFORMES       | Acrocephalus paludicola   | Aquatic Warbler           | 2070-99 | B2       | 0.00      | 0.78  | 1          | 1           | -4      | -2                     | -4    | Very High     |  |
| PASSERIFORMES       | Anthus campestris         | Tawny Pipit               | 2070-99 | B2       | 0.32      | 0.84  | 1          | 1           | -3      | -2                     | -3    | High          |  |
| PASSERIFORMES       | Bucanetes githagineus     | Trumpeter Finch           | 2070-99 | B2       | 0.00      | 0.00  | 1          | 0           | -4      | -4                     | -4    | Very High     |  |
| PASSERIFORMES       | Calandrella brachydactyla | Greater Short-toed Lark   | 2070-99 | B2       | 0.65      | 1.15  | 1          | 1           | -2      | 0                      | -2    | Moderate      |  |
| PASSERIFORMES       | Chersophilus duponti      | Dupont's Lark             | 2070-99 | B2       | 0.00      | 0.00  | 1          | 1           | -4      | -5                     | -5    | Critical      |  |
| PASSERIFORMES       | Emberiza caesia           | Cretzschmar's Bunting     | 2070-99 | B2       | 0.53      | 2.82  | 0          | 0           | -1      | 4                      | -1    | Low           |  |
| PASSERIFORMES       | Emberiza cineracea        | Cinereous Bunting         | 2070-99 | B2       | 0.00      | 1.38  | 1          | 1           | -4      | 1                      | -4    | Very High     |  |
| PASSERIFORMES       | Emberiza hortulana        | Ortolan Bunting           | 2070-99 | B2       | 0.57      | 1.03  | 1          | 1           | -2      | 0                      | -2    | Moderate      |  |
| PASSERIFORMES       | Ficedula albicollis       | Collared Flycatcher       | 2070-99 | B2       | 0.20      | 0.76  | 0          | 0           | -3      | -1                     | -3    | High          |  |
| PASSERIFURMES       | Ficedula parva            | Red-breasted Flycatcher   | 2070-99 | B2<br>B2 | 0.02      | 1.03  | 1          | 1           | -2      | -2                     | -2    | Von High      |  |
|                     | Colorida theklae          | Thekia Lark               | 2070-99 | D2<br>R2 | 0.05      | 0.50  | 1          | 1           | -4      | 3                      | -4    | Very High     |  |
|                     | Hippolais olivetorum      | Olive-tree Warbler        | 2070-99 | B2       | 0.03      | 2.96  | 0          | 0           | -4      | -5                     | -4    | Moderate      |  |
| PASSERIFORMES       | Lanius collurio           | Red-backed Shrike         | 2070-99 | B2       | 0.45      | 0.99  | 0          | 0           | -2      | -1                     | -2    | Low           |  |
| PASSERIFORMES       | Lanius minor              | Lesser Grev Shrike        | 2070-99 | B2       | 0.52      | 1.38  | 1          | 1           | -2      | 1                      | -2    | Moderate      |  |
| PASSERIFORMES       | Lanius nubicus            | Masked Shrike             | 2070-99 | B2       | 0.02      | 3.04  | 0          | 0           | -3      | 4                      | -3    | High          |  |
| PASSERIFORMES       | Loxia scotica             | Scottish Crossbill        | 2070-99 | B2       | 0.00      | 2.86  | 2          | 1           | -5      | 3                      | -5    | Critical      |  |
| PASSERIFORMES       | Lullula arborea           | Wood Lark                 | 2070-99 | B2       | 0.60      | 0.94  | 1          | 1           | -2      | -2                     | -2    | Moderate      |  |
| PASSERIFORMES       | Luscinia svecica          | Bluethroat                | 2070-99 | B2       | 0.31      | 0.48  | 0          | 0           | -2      | -3                     | -3    | High          |  |
| PASSERIFORMES       | Melanocorypha calandra    | Calandra Lark             | 2070-99 | B2       | 0.63      | 1.19  | 1          | 1           | -2      | 0                      | -2    | Moderate      |  |
| PASSERIFORMES       | Oenanthe leucura          | Black Wheatear            | 2070-99 | B2       | 0.06      | 0.49  | 1          | 1           | -4      | -4                     | -4    | Very High     |  |
| PASSERIFORMES       | Oenanthe pleschanka       | Pied Wheatear             | 2070-99 | B2       | 0.17      | 0.60  | 0          | 0           | -3      | -2                     | -3    | High          |  |
| PASSERIFORMES       | Pyrrhocorax pyrrhocorax   | Red-billed Chough         | 2070-99 | B2       | 0.20      | 0.62  | 1          | 1           | -4      | -3                     | -4    | Very High     |  |
| PASSERIFORMES       | Sitta krueperi            | Krueper's Nuthatch        | 2070-99 | B2       | 0.00      | 1.63  | 2          | 1           | -5      | 2                      | -5    | Critical      |  |
| PASSERIFORMES       | Sylvia nisoria            | Barred Warbler            | 2070-99 | B2       | 0.47      | 0.96  | 0          | 0           | -2      | -1                     | -2    | Moderate      |  |
| PASSERIFORMES       | Sylvia rueppelli          | Rueppell's Warbler        | 2070-99 | B2       | 0.00      | 1.07  | 1          | 1           | -4      | 0                      | -4    | Very High     |  |
| PASSERIFORMES       | Sylvia sarda              | Marmora's Warbler         | 2070-99 | B2       | 0.00      | 0.61  | 1          | 0           | -4      | -2                     | -4    | Very High     |  |
| PASSERIFORMES       | Sylvia undata             | Dartford Warbler          | 2070-99 | B2       | 0.39      | 0.86  | 2          | 1           | -4      | -2                     | -4    | Very High     |  |
|                     | Prialacrocorax pygmeus    | Pygmy Cormorant           | 2070-99 | B2       | 0.07      | 0.01  | 1          | 1           | -4      | -5                     | -5    | Critical      |  |
| PHUENICOPTERIFURMES | Phoenicopterus ruber      | Greater Flamingo          | 2070-99 | B2       | 0.00      | 0.06  | 2          | 1           | -5      | -5                     | -5    | Critical      |  |
|                     | Dendrocopos readius       | Middle Spotted Woodpacker | 2070-99 | B2<br>B2 | 0.21      | 0.83  | 1          | 1           | -4      | -2                     | -4    | Very High     |  |
| PICIEORMES          | Dendrocopos medilus       | Svrian Woodpecker         | 2070-99 | B2       | 0.34      | 0.03  | 0          | 0           | -3      | -1                     | -3    | Moderate      |  |
| PICIFORMES          | Denulocopus synacus       | Black Woodpecker          | 2070-99 | B2       | 0.41      | 0.73  | 0          | 0           | -2      | -1                     | -2    | Low           |  |
| PICIFORMES          | Picoides tridactulus      | Three-toed Woodpecker     | 2070-99 | B2       | 0.62      | 0.68  | 1          | 1           | -1      | -1                     | -1    | High          |  |
| PICIEORMES          | Picus canus               | Grev-faced Woodpecker     | 2070-99 | B2       | 0.01      | 0.84  | 1          | 0           | -3      | -1                     | -3    | High          |  |
| PODICIPEDIFORMES    | Podiceps auritus          | Slavonian Grebe           | 2070-99 | B2       | 0.19      | 0.61  | 1          | 1           | -4      | -3                     | -4    | Very High     |  |
| PROCELLARIIFORMES   | Calonectris diomedea      | Cory's Shearwater         | 2070-99 | B2       | 0.06      | 0.50  | 1          | 1           | -4      | -3                     | -4    | Very High     |  |
| PROCELLARIIFORMES   | Hydrobates pelagicus      | European Storm-petrel     | 2070-99 | B2       | 0.10      | 1.18  | 1          | 1           | -4      | 0                      | -4    | Very High     |  |
| PROCELLARIIFORMES   | Oceanodroma leucorhoa     | Leach's Storm-petrel      | 2070-99 | B2       | 0.11      | 0.89  | 1          | 1           | -4      | -2                     | -4    | Very High     |  |
| PROCELLARIIFORMES   | Puffinus yelkouan         | Yelkouan Shearwater       | 2070-99 | B2       | 0.00      | 0.36  | 1          | 1           | -4      | -4                     | -4    | Very High     |  |
| PTEROCLIFORMES      | Pterocles alchata         | Pin-tailed Sandgrouse     | 2070-99 | B2       | 0.16      | 0.87  | 2          | 1           | -5      | -2                     | -5    | Critical      |  |
| PTEROCLIFORMES      | Pterocles orientalis      | Black-bellied Sandgrouse  | 2070-99 | B2       | 0.14      | 0.81  | 2          | 1           | -5      | -2                     | -5    | Critical      |  |
| STRIGIFORMES        | Aegolius funereus         | Boreal Owl                | 2070-99 | B2       | 0.52      | 0.59  | 0          | 0           | -1      | -2                     | -2    | Moderate      |  |
| STRIGIFORMES        | Asio flammeus             | Short-eared Owl           | 2070-99 | B2       | 0.37      | 0.49  | 1          | 1           | -3      | -4                     | -4    | Very High     |  |
| STRIGIFORMES        | Bubo bubo                 | Eurasian Eagle-owl        | 2070-99 | B2       | 0.39      | 0.74  | 1          | 0           | -3      | -1                     | -3    | High          |  |
| STRIGIFORMES        | Glaucidium passerinum     | Eurasian Pygmy-owl        | 2070-99 | B2       | 0.51      | 0.68  | 1          | 0           | -2      | -2                     | -2    | Moderate      |  |
| STRIGIFORMES        | Nyctea scandiaca          | Snowy Owl                 | 2070-99 | B2       | 0.22      | 0.22  | 1          | 1           | -4      | -5                     | -5    | Critical      |  |
| STRIGIFORMES        | Strix nebulosa            | Great Grey Owl            | 2070-99 | B2       | 0.19      | 0.27  | 1          | 1           | -4      | -5                     | -5    | Critical      |  |
| STRIGIFORMES        | Strix uralensis           | Ural Owl                  | 2070-99 | B2       | 0.45      | 0.65  | 1          | 1           | -3      | -3                     | -3    | High          |  |
| STRIGIFORMES        | Surnia ulula              | Northern Hawk Owl         | 2070-99 | B2       | 0.40      | 0.56  | 1          | 1           | -3      | -3                     | -3    | High          |  |

Modelled breeding birds data are from Huntley *et al.*, 2007. Climate projections for 2070-99 based on the Hadley Centre HadCM3 coupled atmosphere–ocean general circulation model using the B2 emissions scenario.

**Overlap:** The number of squares within the intersection between the projected and simulated recent ranges divided by the number of squares in the simulated recent range.

**Ratio (remaining):** The number of UTM squares in the projected range divided by the number in the simulated recent range.

**Impact score / categories:** EC = Extremely Critical (-6), C = Critical (-5), VH = Very High (-4), H = High (-3), M = Moderate (-2), L = Low (-1); - = reduction in climate space, + = increase in climate space.

### **Appendix 2: Reptiles and amphibians**

Model based vulnerability assessment for amphibians and reptiles listed as N2K species. The SRES Scenario "A1" in the table stands for "A1F1".

|                                                                                                             |                          |                       |         | MOE       | DELLED IMP | PACT  | ADAPTATION   | CONSTRAINTS | VULNERABILITY ASSE |       |               | SMENT             |
|-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|---------|-----------|------------|-------|--------------|-------------|--------------------|-------|---------------|-------------------|
|                                                                                                             |                          |                       |         |           |            |       |              |             |                    |       |               | Worst             |
|                                                                                                             |                          |                       | Time    | SRES      |            |       | General +    |             |                    |       | Worst         | Vulnerability     |
| Order                                                                                                       | Species                  | English name          | Horizon | Scenario  | Overlap    | Ratio | colonisation | General     | Overlap            | Ratio | vulnerability | category          |
|                                                                                                             |                          |                       | 2050    | A1        | 0.971      | 1.931 | 1            | 1           | -1                 | 3     | -1            | Low               |
| Pontilog                                                                                                    | Corotto corotto          | Loggorbood turtlo     | 2050    | A2        | 0.975      | 1.749 | 1            | 1           | -1                 | 3     | -1            | Low               |
| Repules                                                                                                     | Carella carella          | Loggernead turtle     | 2050    | B1        | 0.980      | 1.965 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | B2        | 0.993      | 1.889 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | A1        | 0.907      | 1.592 | 1            | 1           | -1                 | 2     | -1            | Low               |
|                                                                                                             |                          | European pond         | 2050    | A2        | 0.950      | 1.656 | 1            | 1           | -1                 | 2     | -1            | Low               |
| Reptiles                                                                                                    | Emys orbicularis         | turtle                | 2050    | B1        | 0.933      | 1.659 | 1            | 1           | -1                 | 2     | -1            | Low               |
| Reptiles Mauremys leprosa   Reptiles Mauremys caspica   Reptiles Testudo graeca   Reptiles Testudo hermanni |                          | 2050                  | B2      | 0.938     | 1.623      | 1     | 1            | -1          | 2                  | -1    | Low           |                   |
|                                                                                                             |                          |                       | 2050    | A1        | 0.738      | 1 010 | 1            | 1           | -1                 | 0     | -1            | Low               |
|                                                                                                             |                          | Mediterranean         | 2050    | Δ2        | 0.788      | 1 242 | 1            | 1           | -1                 | 0     | -1            | Low               |
| Reptiles                                                                                                    | Mauremys leprosa         | pond turtle           | 2050    | R1        | 0.700      | 0.01/ | 1            | 1           | -1                 | -2    | -1            | Moderate          |
|                                                                                                             |                          | pond tanto            | 2000    | DI<br>DO  | 0.000      | 0.914 | 1            | 1           | -2                 | -2    | -2            | law               |
|                                                                                                             |                          |                       | 2000    | B2        | 0.752      | 1.100 | 1            | 1           | -1                 | 2     | -1            | LOW               |
|                                                                                                             |                          | O                     | 2050    | AT        | 0.996      | 1.749 | 1            | 1           | -1                 | 3     | -1            | LOW               |
| Reptiles                                                                                                    | Mauremys                 | Caspian pond          | 2050    | A2        | 0.999      | 1.580 | 1            | 1           | -1                 | 2     | -1            | Low               |
|                                                                                                             | caspica                  | turtie                | 2050    | B1        | 0.998      | 1.605 | 1            | 1           | -1                 | 2     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | B2        | 0.997      | 1.720 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | A1        | 0.987      | 2.247 | 1            | 1           | -1                 | 3     | -1            | Low               |
| Reptiles                                                                                                    | Testudo graeca           | Greek tortoise        | 2050    | A2        | 0.985      | 2.090 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | B1        | 0.991      | 2.076 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | B2        | 0.990      | 2.148 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | A1        | 0.999      | 1.969 | 1            | 1           | -1                 | 3     | -1            | Low               |
| Pontilog                                                                                                    | Tostudo hormonni         | Hermann's             | 2050    | A2        | 0.999      | 1.941 | 1            | 1           | -1                 | 3     | -1            | Low               |
| Repules                                                                                                     | restudo nermanni         | tortoise              | 2050    | B1        | 0.999      | 1.850 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | B2        | 0.999      | 1.987 | 1            | 1           | -1                 | 3     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | A1        | 0.986      | 1.668 | 1            | 1           | -1                 | 2     | -1            | Low               |
|                                                                                                             | Testudo                  | Marginated            | 2050    | A2        | 0.985      | 1.649 | 1            | 1           | -1                 | 2     | -1            | Low               |
| Reptiles                                                                                                    | marginata                | tortoise              | 2050    | B1        | 0.989      | 1.533 | 1            | 1           | -1                 | 2     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | B2        | 0.996      | 1.782 | 1            | 1           | -1                 | 3     | -1            | Low               |
| -                                                                                                           |                          |                       | 2050    | Δ1        | 0.544      | 1.009 | 1            | 1           | -2                 | 0     | -2            | Moderate          |
|                                                                                                             | Phyllodactylus           | European leaf-        | 2050    | Δ2        | 0.594      | 1.000 | 1            | 1           | -2                 | 0     | -2            | Moderate          |
| Reptiles                                                                                                    | europaeus                | toed gecko            | 2050    | 7.2<br>P1 | 0.534      | 0.006 | 1            | 1           | 2                  | 2     | 2             | Moderate          |
| eu                                                                                                          |                          | g                     | 2050    | D1<br>D2  | 0.514      | 0.900 | 1            | 1           | -2                 | -2    | -2            | Moderate          |
|                                                                                                             |                          |                       | 2000    | B2        | 0.530      | 0.003 | -            | 1           | -2                 | -2    | -2            | Moderate          |
|                                                                                                             |                          |                       | 2050    | AI        | 0.477      | 0.511 | 1            | 1           | -3                 | -3    | -3            | nign              |
| Reptiles                                                                                                    | Lacerta monticola        | a Iberian rock lizard | 2050    | AZ        | 0.541      | 0.572 |              | 1           | -2                 | -3    | -3            | ⊢ign              |
|                                                                                                             | ptiles Lacerta monticola |                       | 2050    | B1        | 0.536      | 0.577 | 1            | 1           | -2                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | B2        | 0.556      | 0.613 | 1            | 1           | -2                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | A1        | 0.449      | 0.556 | 1            | 1           | -3                 | -3    | -3            | High              |
| Reptiles                                                                                                    | Lacerta schrieberi       | Schreiber's green     | 2050    | A2        | 0.508      | 0.628 | 1            | 1           | -2                 | -3    | -3            | High              |
| -                                                                                                           |                          | lizard                | 2050    | B1        | 0.475      | 0.583 | 1            | 1           | -3                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | B2        | 0.517      | 0.645 | 1            | 1           | -2                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | A1        | 0.997      | 2.679 | 0            | 0           | 0                  | 4     | 0             | Moderate positive |
| Reptiles                                                                                                    | Elaphe situla            | European              | 2050    | A2        | 0.996      | 2.507 | 0            | 0           | 0                  | 4     | 0             | Moderate positive |
|                                                                                                             |                          | ratsnake              | 2050    | B1        | 0.998      | 2.441 | 0            | 0           | 0                  | 4     | 0             | Moderate positive |
|                                                                                                             |                          |                       | 2050    | B2        | 0.998      | 2.670 | 0            | 0           | 0                  | 4     | 0             | Moderate positive |
|                                                                                                             |                          |                       | 2050    | A1        | 0.628      | 1.250 | 2            | 1           | -3                 | 0     | -3            | High              |
| Pontilog                                                                                                    | Vinoro urainii           | Moodowvinor           | 2050    | A2        | 0.762      | 1.640 | 1            | 1           | -1                 | 2     | -1            | Low               |
| Repules                                                                                                     | vipera ursinii           | weadow viper          | 2050    | B1        | 0.626      | 1.252 | 2            | 1           | -3                 | 0     | -3            | High              |
|                                                                                                             |                          |                       | 2050    | B2        | 0.725      | 1.497 | 1            | 1           | -1                 | 1     | -1            | Low               |
|                                                                                                             |                          |                       | 2050    | A1        | 0.795      | 1.275 | 2            | 2           | -2                 | -1    | -2            | Moderate          |
| A                                                                                                           |                          | 0                     | 2050    | A2        | 0.862      | 1.560 | 2            | 2           | -2                 | 1     | -2            | Moderate          |
| Amphibians                                                                                                  | Proteus anguinus         | Oim                   | 2050    | B1        | 0.719      | 1.045 | 2            | 2           | -2                 | -1    | -2            | Moderate          |
|                                                                                                             |                          |                       | 2050    | B2        | 0.859      | 1.496 | 2            | 2           | -2                 | 0     | -2            | Moderate          |
|                                                                                                             |                          |                       | 2050    | A1        | 0.526      | 0.593 | 1            | 1           | -2                 | -3    | -3            | Hiab              |
|                                                                                                             | Chioglossa               | Gold-striped          | 2050    | A2        | 0.526      | 0.593 | 1            | 1           | -2                 | -3    | -3            | High              |
| Amphibians                                                                                                  | lusitannica              | salamander            | 2050    | B1        | 0.551      | 0.657 | 1            | 1           | -2                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | B2        | 0.550      | 0.646 | 1            | 1           | -2                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | DZ<br>A 1 | 0.550      | 0.040 | 2            | 2           | -2                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2000    | A1        | 0.019      | 0.700 | 2            | 2           | -3                 | -3    | -3            | Lliah             |
| Amphibians                                                                                                  | Salamandra atra          | Alpine salamander     | 2050    | AZ<br>D4  | 0.619      | 0.766 | 2            | 2           | -3                 | -3    | -3            | nign              |
|                                                                                                             |                          |                       | 2050    | B1        | 0.572      | 0.853 | 2            | 2           | -3                 | -3    | -3            | Hign              |
| L                                                                                                           | +                        | +                     | 2050    | B2        | 0.599      | 0.888 | 2            | 2           | -3                 | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | A1        | 0.248      | 0.682 | 1            | 1           | -4                 | -3    | -4            | Very High         |
| Amphibians                                                                                                  | Salamandrina             | Spectacled            | 2050    | A2        | 0.248      | 0.682 | 1            | 1           | -4                 | -3    | -4            | Very High         |
|                                                                                                             | terdigitata              | salamander            | 2050    | B1        | 0.324      | 0.853 | 1            | 1           | -3                 | -2    | -3            | High              |
|                                                                                                             | 1                        | ļ                     | 2050    | B2        | 0.246      | 0.739 | 1            | 1           | -4                 | -2    | -4            | Very High         |
|                                                                                                             |                          |                       | 2050    | A1        | 0.796      | 0.491 | 0            | 0           | 0                  | -3    | -3            | High              |
| Amphibians                                                                                                  | Triturus vulgarie        | Smooth newt           | 2050    | A2        | 0.796      | 0.491 | 0            | 0           | 0                  | -3    | -3            | High              |
| , anpinolario                                                                                               | . marao vulgano          | Silloour newi         | 2050    | B1        | 0.817      | 0.381 | 0            | 0           | 0                  | -3    | -3            | High              |
|                                                                                                             |                          |                       | 2050    | B2        | 0.804      | 0.569 | 0            | 0           | 0                  | -2    | -2            | Moderate          |
|                                                                                                             |                          |                       | 2050    | A1        | 0.491      | 1.329 | 1            | 1           | -3                 | 1     | -3            | High              |
| American                                                                                                    | Triturus                 | Comothics             | 2050    | A2        | 0.491      | 1.329 | 1            | 1           | -3                 | 1     | -3            | High              |
| Ampnibians                                                                                                  | montandoni               | Carpatnian newt       | 2050    | B1        | 0.381      | 2.438 | 1            | 1           | -3                 | 3     | -3            | High              |

Modelled reptile and amphibian data are from Araujo *et al.*, 2006. Climate projections for 2050 are based on the Hadley Centre HadCM3 coupled atmosphere–ocean general circulation model using the A1F1, A2, B2 and B1 emissions scenarios.

**Overlap:** The number of squares within the intersection between the projected and simulated recent ranges divided by the number of squares in the simulated recent range.

**Ratio (remaining):** The number of UTM squares in the projected range divided by the number in the simulated recent range.

**Impact score / categories:** EC = Extremely Critical (-6), C = Critical (-5), VH = Very High (-4), H = High (-3), M = Moderate (-2), L = Low (-1); - = reduction in climate space, + = increase in climate space

## **Appendix 3: Butterflies**

|                 |                 |                 |                 | MOD              | ELLED IMP | ACT   | ADAPTATION                | CONSTRAINTS |         | VULNERA  | BILITY ASSESS          | MENT                               |
|-----------------|-----------------|-----------------|-----------------|------------------|-----------|-------|---------------------------|-------------|---------|----------|------------------------|------------------------------------|
| Order           | Species         | English<br>name | Time<br>Horizon | SRES<br>Scenario | Overlap   | Ratio | General +<br>colonisation | General     | Overlap | Ratio    | Worst<br>vulnerability | Worst<br>vulnerability<br>category |
|                 |                 |                 | 2050            | B1               | no data   | 0.97  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2050            | A2               | no data   | 0.92  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butterflies     | oedippus        | False Ringlet   | 2050            | A1FI<br>B1       | no data   | 0.89  | 0                         | 0           | 1       | -1       | -1                     | LOW                                |
|                 |                 |                 | 2080            | A2               | no data   | 3.02  | 0                         | 0           | 1       | 4        | 1                      | Low positive                       |
|                 |                 |                 | 2080            | A1FI             | no data   | 3.12  | 0                         | 0           | 1       | 4        | 1                      | Low positive                       |
|                 |                 |                 | 2050            | B1               | no data   | 0.92  | 2                         | 2           | -1      | -3       | -3                     | High                               |
|                 |                 | Dopubo          | 2050            | A2               | no data   | 0.49  | 2                         | 2           | -1      | -5       | -5                     | Critical                           |
| Butterflies     | Colias          | Clouded         | 2050            | A1FI             | no data   | 0.64  | 2                         | 2           | -1      | -4       | -4                     | Very High                          |
|                 | myrmidone       | Yellow          | 2080            | B1               | no data   | 0.55  | 2                         | 2           | -1      | -4       | -4                     | Very High                          |
|                 |                 |                 | 2080            | A2               | no data   | 0.3   | 2                         | 2           | -1      | -5       | -5                     | Critical                           |
|                 |                 |                 | 2060            | B1               | no data   | 0.37  | 2                         | 2           | -1      | -5<br>-1 | -5                     | Low                                |
|                 |                 |                 | 2050            | A2               | no data   | 0.84  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Duttorflice     | Erebia medusa   | Woodland        | 2050            | A1FI             | no data   | 0.73  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butternies      | polaris         | Ringlet         | 2080            | B1               | no data   | 1.07  | 0                         | 0           | 1       | 1        | 1                      | Low positive                       |
|                 |                 |                 | 2080            | A2               | no data   | 1.03  | 0                         | 0           | 1       | 1        | 1                      | Low positive                       |
|                 |                 |                 | 2080            | A1FI             | no data   | 0.97  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2050            | B1               | no data   | 0.69  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 | Funbudruse      | Marah           | 2050            | A2               | no data   | 0.82  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butterflies     | aurinia         | fritillary      | 2050            | B1               | no data   | 0.84  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2080            | A2               | no data   | 0.83  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2080            | A1FI             | no data   | 0.62  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2050            | B1               | no data   | 0.83  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 | Cilver          | 2050            | A2               | no data   | 0.8   | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butterflies     | Hesperia        | spotted         | 2050            | A1FI             | no data   | 0.75  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 | comma catena    | skipper         | 2080            | B1               | no data   | 0.61  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2080            | A2               | no data   | 0.54  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2060            | B1               | no data   | 0.4   | 0                         | 2           | -1      | -3       | -3                     | High                               |
|                 |                 |                 | 2050            | A2               | no data   | 0.51  | 2                         | 2           | -1      | -4       | -3                     | Very High                          |
| Durthe office o |                 | Fenton's        | 2050            | A1FI             | no data   | 0.76  | 2                         | 2           | -1      | -3       | -3                     | High                               |
| Butterflies L   | Leptidea morsei | Wood White      | 2080            | B1               | no data   | 0.81  | 2                         | 2           | -1      | -3       | -3                     | High                               |
|                 |                 |                 | 2080            | A2               | no data   | 0.87  | 2                         | 2           | -1      | -3       | -3                     | High                               |
|                 |                 |                 | 2080            | A1FI             | no data   | 0.91  | 2                         | 2           | -1      | -3       | -3                     | High                               |
|                 |                 |                 | 2050            | B1               | no data   | 0.73  | 1                         | 1           | 0       | -2       | -2                     | Moderate                           |
|                 |                 | Large           | 2050            | A2               | no data   | 0.55  | 1                         | 1           | 0       | -3       | -3                     | High                               |
| Butterflies     | Lycaena dispar  | Copper          | 2030            | B1               | no data   | 0.65  | 1                         | 1           | 0       | -3       | -3                     | High                               |
|                 |                 | Butterfly       | 2080            | A2               | no data   | 0.38  | 1                         | 1           | 0       | -4       | -4                     | Very High                          |
|                 |                 |                 | 2080            | A1FI             | no data   | 0.46  | 1                         | 1           | 0       | -4       | -4                     | Very High                          |
|                 |                 |                 | 2050            | B1               | no data   | 0.93  | 1                         | 1           | 0       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2050            | A2               | no data   | 0.91  | 1                         | 1           | 0       | -2       | -2                     | Moderate                           |
| Butterflies     | Lycaena helle   | Violet          | 2050            | A1FI             | no data   | 0.98  | 1                         | 1           | 0       | -2       | -2                     | Moderate                           |
|                 |                 | Copper          | 2080            | B1               | no data   | 0.92  | 1                         | 1           | 0       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2080            | A2               | no data   | 0.99  | 1                         | 1           | 0       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2050            | B1               | no data   | 0.77  | 0                         | 0           | 1       | -2       | -1                     | Low                                |
|                 |                 |                 | 2050            | A2               | no data   | 0.81  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butterflies     | Phengaris       | Dusky Large     | 2050            | A1FI             | no data   | 0.6   | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
| Dutternies      | nausithous      | Blue            | 2080            | B1               | no data   | 0.78  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2080            | A2               | no data   | 0.53  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 | +               |                 | 2080            | A1FI             | no data   | 0.36  | 0                         | 0           | 1       | -3       | -3                     | High                               |
|                 |                 |                 | 2050            | B1               | no data   | 0.99  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 | Phendaris       |                 | 2050            | Δ1FI             | no data   | 0.91  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butterflies     | teleius         | N/A             | 2080            | B1               | no data   | 0.84  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2080            | A2               | no data   | 0.76  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 |                 |                 | 2080            | A1FI             | no data   | 0.62  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 |                 |                 | 2050            | B1               | no data   | 0.58  | 0                         | 0           | 1       | -2       | -2                     | Moderate                           |
|                 |                 | Italian         | 2050            | A2               | no data   | 0.41  | 0                         | 0           | 1       | -3       | -3                     | High                               |
| Butterflies     | Melanargia      | Marbled         | 2050            | A1FI             | no data   | 0.41  | 0                         | 0           | 1       | -3       | -3                     | High                               |
|                 | alge            | White           | 2080            | B1               | no data   | 2.26  | 0                         | 0           | 1       | 4        | 1                      | Low positive                       |
|                 | 1               |                 | 2080            |                  | no data   | 2.24  | 0                         | 0           | 1       | 4        | 1                      | Low positive                       |
|                 | 1               |                 | 2050            | B1               | no data   | 0.97  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
|                 | 1               |                 | 2050            | A2               | no data   | 0.78  | 0                         | 0           | 1       | -1       | -1                     | Low                                |
| Butterflies     | Plebejus        | Arctic Blue     | 2050            | A1FI             | no data   | 1     | 0                         | 0           | 1       | 1        | 1                      | Low positive                       |
| Dutternies      | glandon         | A TOUC DILLE    | 2080            | B1               | no data   | 0.48  | 0                         | 0           | 1       | -3       | -3                     | High                               |
|                 | 1               |                 | 2080            | A2               | no data   | 0.78  | 0                         | 0           | 1       | -1       | -1                     | Low                                |

Model based vulnerability assessment for butterflies listed as N2K species.

Modelled butterfly data are from Settele *et al.*, 2008. Climate projections are based on the Hadley Centre HadCM3 coupled atmosphere-ocean general circulation model for the A1F1, A2 and B1 scenarios.

**Overlap:** The number of squares within the intersection between the projected and simulated recent ranges divided by the number of squares in the simulated recent range.

**Ratio (remaining):** The number of UTM squares in the projected range divided by the number in the simulated recent range.

**Impact score / categories:** EC = Extremely Critical (-6), C = Critical (-5), VH = Very High (-4), H = High (-3), M = Moderate (-2), L = Low (-1); - = reduction in climate space, + = increase in climate space.

### **Appendix 4: Vascular plants**

Model based vulnerability assessment for butterflies listed as N2K species. The SRES Scenario "A1" in the table stands for "A1F1".

|          |                          |            |         | MO       | DELLED IMP | ACT   | ADAPTATION   | CONSTRAINTS | VULNERABILITY ASSE |       | SSMENT        |                     |
|----------|--------------------------|------------|---------|----------|------------|-------|--------------|-------------|--------------------|-------|---------------|---------------------|
|          |                          |            |         |          |            |       |              |             |                    |       |               |                     |
|          |                          | English    | Time    | SRES     |            |       | General +    |             |                    |       | Worst         | Worst vulnerability |
| Order    | Species                  | name       | Horizon | Scenario | Overlap    | Ratio | colonisation | General     | Overlap            | Ratio | vulnerability | category            |
|          |                          |            | 2050    | A1<br>A2 | 0.589      | 0.820 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2050    | R1       | 0.650      | 0.873 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          | Aquilegia                |            | 2050    | B2       | 0.639      | 0.890 | 0            | 0           | -1                 | -1    | -1            | Low                 |
| Plants   | pyrenaica                |            | 2080    | A1       | 0.296      | 0.639 | 0            | 0           | -3                 | -2    | -3            | High                |
|          |                          |            | 2080    | A2       | 0.460      | 0.714 | 0            | 0           | -2                 | -1    | -2            | Moderate            |
|          |                          |            | 2080    | B1       | 0.539      | 0.769 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2080    | B2       | 0.539      | 0.761 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2050    | A1       | 0.561      | 1.010 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
|          |                          |            | 2050    | A2       | 0.675      | 1.090 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
|          |                          |            | 2050    | B1       | 0.696      | 1.146 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
| Plants   | Arabis                   |            | 2050    | B2       | 0.645      | 1.113 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
|          | Scopolialia              |            | 2080    | A1       | 0.349      | 1.163 | 1            | 1           | -3                 | 0     | -3            | Hign                |
|          |                          |            | 2080    | AZ<br>B1 | 0.621      | 2.014 | 1            | 1           | -2                 | 3     | -2            | Moderate            |
|          |                          |            | 2080    | B2       | 0.563      | 1.333 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
|          |                          |            | 2050    | A1       | 0.599      | 0.881 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2050    | A2       | 0.696      | 0.958 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2050    | B1       | 0.645      | 0.872 | 0            | 0           | -1                 | -1    | -1            | Low                 |
| Plante   | Arenaria ciliata         |            | 2050    | B2       | 0.667      | 0.908 | 0            | 0           | -1                 | -1    | -1            | Low                 |
| Fidilits | Alenana ciliata          | allata     | 2080    | A1       | 0.301      | 0.674 | 0            | 0           | -2                 | -2    | -2            | Moderate            |
|          |                          |            | 2080    | A2       | 0.402      | 0.735 | 0            | 0           | -2                 | -1    | -2            | Moderate            |
|          |                          |            | 2080    | B1       | 0.490      | 0.741 | 0            | 0           | -2                 | -1    | -2            | Moderate            |
|          |                          |            | 2080    | B2       | 0.468      | 0.756 | 0            | 0           | -2                 | -1    | -2            | Moderate            |
|          |                          |            | 2050    | A1       | 0.697      | 0.844 | 1            | 0           | -2                 | -1    | -2            | Moderate            |
|          | Asplenium<br>adulterinum |            | 2050    | A2       | 0.747      | 0.904 | 0            | 0           | 0                  | -1    | -1            | Low                 |
|          |                          |            | 2050    | B1<br>B2 | 0.766      | 1.003 | 0            | 0           | 0                  | 1     | 0             | low                 |
| Plants   |                          |            | 2030    | Δ1       | 0.745      | 0.907 | 1            | 0           | -3                 | -1    | -1            | High                |
|          |                          |            | 2080    | A2       | 0.580      | 0.896 | 1            | 0           | -2                 | -1    | -2            | Moderate            |
|          |                          |            | 2080    | B1       | 0.676      | 1.007 | 1            | 0           | -2                 | 1     | -2            | Moderate            |
|          |                          |            | 2080    | B2       | 0.650      | 0.916 | 1            | 0           | -2                 | -1    | -2            | Moderate            |
|          |                          | ium        | 2050    | A1       | 0.636      | 0.801 | 1            | 1           | -2                 | -2    | -2            | Moderate            |
|          | Botrychium               |            | 2050    | A2       | 0.666      | 0.821 | 1            | 1           | -2                 | -2    | -2            | Moderate            |
|          |                          |            | 2050    | B1       | 0.663      | 0.830 | 1            | 1           | -2                 | -2    | -2            | Moderate            |
| Plants   |                          |            | 2050    | B2       | 0.652      | 0.814 | 1            | 1           | -2                 | -2    | -2            | Moderate            |
|          | simplex                  |            | 2080    | A1       | 0.432      | 0.677 | 1            | 1           | -3                 | -3    | -3            | High                |
|          |                          |            | 2080    | A2       | 0.460      | 0.724 | 1            | 1           | -3                 | -2    | -3            | High                |
|          |                          |            | 2080    | B1<br>B2 | 0.582      | 0.782 | 1            | 1           | -2                 | -2    | -2            | Moderate            |
|          |                          |            | 2050    | A1       | 0.689      | 0.762 | 0            | 0           | -2                 | -2    | -2            | Low                 |
|          |                          |            | 2050    | A2       | 0.706      | 0.761 | 0            | 0           | 0                  | -1    | -1            | Low                 |
|          |                          |            | 2050    | B1       | 0.719      | 0.779 | 0            | 0           | 0                  | -1    | -1            | Low                 |
| Plante   | Brova linearia           |            | 2050    | B2       | 0.694      | 0.753 | 0            | 0           | -1                 | -1    | -1            | Low                 |
| Fidilits | Braya linearis           | a linearis | 2080    | A1       | 0.630      | 0.844 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2080    | A2       | 0.684      | 0.782 | 0            | 0           | -1                 | -1    | -1            | Low                 |
|          |                          |            | 2080    | B1       | 0.759      | 0.849 | 0            | 0           | 0                  | -1    | -1            | Low                 |
|          |                          |            | 2080    | B2       | 0.732      | 0.812 | 0            | 0           | 0                  | -1    | -1            | Low                 |
|          |                          |            | 2050    | A1       | 0.698      | 1.085 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
|          |                          |            | 2050    | A2<br>P1 | 0.786      | 1.094 | 1            | 1           | -1                 | 0     | -1            | Low                 |
|          | Dianthus                 |            | 2050    | B1<br>B2 | 0.763      | 1.089 | 1            | 1           | -1                 | 0     | -1            | Low                 |
| Plants   | arenarius                |            | 2080    | A1       | 0.366      | 1.107 | 1            | 1           | -3                 | 0     | -1            | High                |
|          |                          |            | 2080    | A2       | 0.532      | 1.005 | 1            | 1           | -2                 | 0     | -2            | Moderate            |
|          |                          |            | 2080    | B1       | 0.610      | 0.977 | 1            | 1           | -2                 | -2    | -2            | Moderate            |
|          |                          |            | 2080    | B2       | 0.434      | 0.835 | 1            | 1           | -3                 | -2    | -3            | High                |
|          |                          |            | 2050    | A1       | 0.719      | 1.292 | 1            | 1           | -1                 | 0     | -1            | Low                 |
|          |                          |            | 2050    | A2       | 0.797      | 1.342 | 1            | 1           | -1                 | 1     | -1            | Low                 |
|          |                          |            | 2050    | B1       | 0.747      | 1.274 | 1            | 1           | -1                 | 0     | -1            | Low                 |
| Plants   | Dianthus                 |            | 2050    | B2       | 0.766      | 1.302 | 1            | 1           | -1                 | 1     | -1            | Low                 |
|          | cintranUS                |            | 2080    | A1       | 0.487      | 1.465 | 1            | 1           | -3                 | 1     | -3            | High                |
|          |                          |            | 2080    | A2       | 0.643      | 1.554 | 1            | 1           | -2                 | 2     | -2            | Moderate            |
|          |                          |            | 2080    | B1<br>B2 | 0.500      | 0.977 | 1            | 1           | -2                 | -2    | -2            | Moderate            |

#### Impacts of climate change and renewable energy infrastructures on EU biodiversity and Natura 2000

|          |                         |                   | MODELLED IMPACT |                  |         | ADAPTATION | VULNERABILITY ASSESSMENT  |         |         |       |                        |                              |
|----------|-------------------------|-------------------|-----------------|------------------|---------|------------|---------------------------|---------|---------|-------|------------------------|------------------------------|
| Order    | Species                 | English<br>name   | Time<br>Horizon | SRES<br>Scenario | Overlap | Ratio      | General +<br>colonisation | General | Overlap | Ratio | Worst<br>vulnerability | Worst vulnerability category |
|          |                         |                   | 2050            | A1               | 0.905   | 1.555      | 0                         | 0       | 0       | 3     | 0                      | Moderate positive            |
|          |                         |                   | 2050            | A2               | 0.926   | 1.490      | 0                         | 0       | 0       | 2     | 0                      | Moderate positive            |
|          |                         |                   | 2050            | B1               | 0.908   | 1.495      | 0                         | 0       | 0       | 2     | 0                      | Moderate positive            |
| Plants   | Dianthus                |                   | 2050            | B2               | 0.922   | 1.514      | 0                         | 0       | 0       | 3     | 0                      | Moderate positive            |
|          | тарісова                |                   | 2080            | A1               | 0.677   | 2.254      | 1                         | 0       | -2      | 4     | -2                     | Moderate                     |
|          |                         |                   | 2080            | AZ<br>D4         | 0.811   | 1.743      | 0                         | 0       | 0       | 4     | 0                      | Moderate positive            |
|          |                         |                   | 2080            | B1<br>B2         | 0.824   | 1.009      | 0                         | 0       | 0       | 3     | 0                      | Moderate positive            |
|          |                         |                   | 2060            | 62<br>A1         | 0.636   | 0.607      | 0                         | 0       | 0       | 2     | 0                      | Moderate                     |
|          |                         |                   | 2050            | A1               | 0.551   | 0.037      | 0                         | 0       | -1      | -2    | -2                     | Low                          |
|          |                         |                   | 2050            | 7.2<br>B1        | 0.657   | 0.743      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
|          | Diplazium               |                   | 2050            | B2               | 0.623   | 0.740      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
| Plants   | sibiricum               |                   | 2080            | A1               | 0.357   | 0.515      | 0                         | 0       | -2      | -2    | -2                     | Moderate                     |
|          |                         |                   | 2080            | A2               | 0.475   | 0.622      | 0                         | 0       | -2      | -2    | -2                     | Moderate                     |
|          |                         |                   | 2080            | B1               | 0.579   | 0.718      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
|          |                         |                   | 2080            | B2               | 0.532   | 0.749      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
|          |                         |                   | 2050            | A1               | 0.833   | 1.474      | 0                         | 0       | 0       | 2     | 0                      | Moderate positive            |
|          |                         |                   | 2050            | A2               | 0.865   | 1.473      | 0                         | 0       | 0       | 2     | 0                      | Moderate positive            |
|          |                         |                   | 2050            | B1               | 0.830   | 1.426      | 0                         | 0       | 0       | 2     | 0                      | Moderate positive            |
| Dianta   | Herniaria               |                   | 2050            | B2               | 0.863   | 1.488      | 0                         | 0       | 0       | 2     | 0                      | Moderate positive            |
| Plants   | latifolia               |                   | 2080            | A1               | 0.678   | 2.225      | 0                         | 0       | -1      | 4     | -1                     | Low                          |
|          |                         |                   | 2080            | A2               | 0.750   | 1.939      | 0                         | 0       | 0       | 4     | 0                      | Moderate positive            |
|          |                         |                   | 2080            | B1               | 0.742   | 1.769      | 0                         | 0       | 0       | 4     | 0                      | Moderate positive            |
|          |                         |                   | 2080            | B2               | 0.834   | 1.958      | 0                         | 0       | 0       | 4     | 0                      | Moderate positive            |
|          | Herniaria<br>Iusitanica |                   | 2050            | A1               | 0.935   | 1.514      | 1                         | 1       | -1      | 2     | -1                     | Low                          |
|          |                         |                   | 2050            | A2               | 0.941   | 1.478      | 1                         | 1       | -1      | 1     | -1                     | Low                          |
|          |                         |                   | 2050            | B1               | 0.867   | 1.413      | 1                         | 1       | -1      | 1     | -1                     | Low                          |
| Plants   |                         |                   | 2050            | B2               | 0.939   | 1.491      | 1                         | 1       | -1      | 1     | -1                     | Low                          |
| i idinto |                         |                   | 2080            | A1               | 0.845   | 2.171      | 1                         | 1       | -1      | 3     | -1                     | Low                          |
|          |                         |                   | 2080            | A2               | 0.927   | 2.013      | 1                         | 1       | -1      | 3     | -1                     | Low                          |
|          |                         |                   | 2080            | B1               | 0.950   | 1.849      | 1                         | 1       | -1      | 3     | -1                     | Low                          |
|          |                         |                   | 2080            | B2               | 0.951   | 1.907      | 1                         | 1       | -1      | 3     | -1                     | Low                          |
|          |                         |                   | 2050            | A1               | 0.824   | 1.231      | 1                         | 1       | -1      | 0     | -1                     | Low                          |
|          |                         | a                 | 2050            | A2               | 0.845   | 1.188      | 1                         | 1       | -1      | 0     | -1                     | Low                          |
|          |                         |                   | 2050            | B1               | 0.842   | 1.304      | 1                         | 1       | -1      | 1     | -1                     | Low                          |
| Plants   | Marsilea<br>quadrifolia |                   | 2050            | B2               | 0.838   | 1.179      | 1                         | 1       | -1      | 0     | -1                     | Low                          |
|          |                         |                   | 2080            | A1               | 0.643   | 1.990      | 1                         | 1       | -2      | 3     | -2                     | Moderate                     |
|          |                         |                   | 2080            | A2               | 0.826   | 1.794      | 1                         | 1       | -1      | 3     | -1                     | Low                          |
|          |                         |                   | 2080            | B1               | 0.844   | 1.634      | 1                         | 1       | -1      | 2     | -1                     | Low                          |
|          | -                       |                   | 2080            | B2               | 0.872   | 1.631      | 1                         | 1       | -1      | 2     | -1                     | Low                          |
|          |                         |                   | 2050            | A1               | 0.755   | 0.001      | 0                         | 0       | 0       | -1    | -1                     | Low                          |
|          |                         |                   | 2050            | AZ<br>B1         | 0.701   | 0.090      | 0                         | 0       | 0       | -1    | -1                     | Low                          |
|          | Moebringia              | hringia<br>iflora | 2050            | B2               | 0.730   | 0.725      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
| Plants   | lateriflora             |                   | 2030            | Δ1               | 0.003   | 0.725      | 0                         | 0       | -1      | -1    | -1                     | High                         |
|          |                         |                   | 2080            | A2               | 0.593   | 0.400      | 0                         | 0       | -1      | -2    | -2                     | Moderate                     |
|          |                         |                   | 2080            |                  | 0.639   | 0.020      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
|          |                         |                   | 2080            | B2               | 0.693   | 0.760      | 0                         | 0       | -1      | -1    | -1                     | Low                          |
|          |                         |                   | 2050            | A1               | 0.809   | 1.110      | 0                         | 0       | 0       | 1     | 0                      | Moderate positive            |
|          |                         |                   | 2050            | A2               | 0.872   | 1.149      | 0                         | 0       | 0       | 1     | 0                      | Moderate positive            |
|          |                         |                   | 2050            | B1               | 0.838   | 1.048      | 0                         | 0       | 0       | 1     | ŏ                      | Moderate positive            |
| Dia 11   | Paeonia                 |                   | 2050            | B2               | 0.859   | 1.148      | 0                         | 0       | 0       | 1     | 0                      | Moderate positive            |
| Plants   | officinalis             |                   | 2080            | A1               | 0.566   | 1.306      | 0                         | 0       | -1      | 2     | -1                     | Low                          |
|          |                         |                   | 2080            | A2               | 0.733   | 1.160      | 0                         | 0       | 0       | 1     | 0                      | Moderate positive            |
|          |                         |                   | 2080            | B1               | 0.734   | 1.056      | 0                         | 0       | 0       | 1     | 0                      | Moderate positive            |
| 1        |                         |                   | 2080            | B2               | 0.754   | 1.164      | 0                         | 0       | 0       | 1     | 0                      | Moderate positive            |

|          |                         |                       |         |           |         |       |              | CONSTRAINTS | TRAINTS VIII NERABILITY ASSESSMENT |        |               |                     |  |  |
|----------|-------------------------|-----------------------|---------|-----------|---------|-------|--------------|-------------|------------------------------------|--------|---------------|---------------------|--|--|
|          |                         |                       |         | NIO       |         | ACT   | ADAPTATION   | CONSTRAINTS |                                    | VULNER |               |                     |  |  |
|          |                         | English               | Time    | SRES      |         |       | General +    |             |                                    |        | Worst         | Worst vulnerability |  |  |
| Order    | Species                 | name                  | Horizon | Scenario  | Overlap | Ratio | colonisation | General     | Overlap                            | Ratio  | vulnerability | category            |  |  |
|          |                         |                       | 2050    | A1        | 0.609   | 0.862 | 2            | 1           | -3                                 | -2     | -3            | High                |  |  |
|          |                         |                       | 2050    | A2        | 0.684   | 1.028 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
|          |                         |                       | 2050    | B1        | 0.709   | 1.023 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
| Dianta   | Papaver                 |                       | 2050    | B2        | 0.654   | 0.999 | 2            | 1           | -3                                 | -2     | -3            | High                |  |  |
| Fiants   | radicatum               |                       | 2080    | A1        | 0.434   | 1.080 | 2            | 1           | -4                                 | 0      | -4            | Very High           |  |  |
|          |                         |                       | 2080    | A2        | 0.527   | 1.066 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
|          |                         |                       | 2080    | B1        | 0.678   | 1.230 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
|          |                         |                       | 2080    | B2        | 0.553   | 1.049 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
|          |                         |                       | 2050    | A1        | 0.885   | 1.069 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | A2        | 0.899   | 1.077 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | B1        | 0.879   | 1.055 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
| Plante   | Petrocoptis             |                       | 2050    | B2        | 0.892   | 1.086 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
| FIAILS   | grandiflora             |                       | 2080    | A1        | 0.767   | 1.122 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2080    | A2        | 0.836   | 1.102 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2080    | B1        | 0.815   | 1.069 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2080    | B2        | 0.863   | 1.081 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | A1        | 0.669   | 1.076 | 1            | 1           | -2                                 | 0      | -2            | Moderate            |  |  |
|          |                         |                       | 2050    | A2        | 0.729   | 1.085 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | B1        | 0.718   | 1.097 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
| Plante   | Pulsatilla              |                       | 2050    | B2        | 0.724   | 1.101 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
| FIAILS   | patens                  |                       | 2080    | A1        | 0.375   | 0.790 | 1            | 1           | -3                                 | -2     | -3            | High                |  |  |
|          |                         |                       | 2080    | A2        | 0.515   | 0.954 | 1            | 1           | -2                                 | -2     | -2            | Moderate            |  |  |
|          |                         |                       | 2080    | B1        | 0.578   | 1.016 | 1            | 1           | -2                                 | 0      | -2            | Moderate            |  |  |
|          |                         |                       | 2080    | B2        | 0.584   | 1.028 | 1            | 1           | -2                                 | 0      | -2            | Moderate            |  |  |
|          |                         |                       | 2050    | A1        | 0.581   | 0.975 | 2            | 1           | -3                                 | -2     | -3            | High                |  |  |
|          |                         |                       | 2050    | A2        | 0.682   | 1.023 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
|          | Pulsatilla<br>pratensis |                       | 2050    | B1        | 0.684   | 1.066 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
| Plants   |                         |                       | 2050    | B2        | 0.659   | 1.025 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
| i idinto |                         |                       | 2080    | A1        | 0.315   | 0.859 | 2            | 1           | -4                                 | -2     | -4            | Very High           |  |  |
|          |                         |                       | 2080    | A2        | 0.407   | 0.902 | 2            | 1           | -4                                 | -2     | -4            | Very High           |  |  |
|          |                         |                       | 2080    | B1        | 0.515   | 1.045 | 2            | 1           | -3                                 | 0      | -3            | High                |  |  |
|          |                         |                       | 2080    | B2        | 0.474   | 0.966 | 2            | 1           | -4                                 | -2     | -4            | Very High           |  |  |
|          |                         |                       | 2050    | A1        | 0.812   | 1.452 | 1            | 1           | -1                                 | 1      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | A2        | 0.848   | 1.409 | 1            | 1           | -1                                 | 1      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | B1        | 0.859   | 1.460 | 1            | 1           | -1                                 | 1      | -1            | Low                 |  |  |
| Plants   | Pulsatilla              |                       | 2050    | B2        | 0.847   | 1.423 | 1            | 1           | -1                                 | 1      | -1            | Low                 |  |  |
|          | vulgaris                |                       | 2080    | A1        | 0.572   | 1.516 | 1            | 1           | -2                                 | 2      | -2            | Moderate            |  |  |
|          |                         |                       | 2080    | A2        | 0.728   | 1.652 | 1            | 1           | -1                                 | 2      | -1            | Low                 |  |  |
|          |                         |                       | 2080    | B1        | 0.767   | 1.639 | 1            | 1           | -1                                 | 2      | -1            | Low                 |  |  |
|          |                         |                       | 2080    | B2        | 0.756   | 1.518 | 1            | 1           | -1                                 | 2      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | A1        | 0.803   | 0.894 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
|          |                         | anunculus<br>oponicus | 2050    | A2        | 0.806   | 0.893 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
|          |                         |                       | 2050    | B1        | 0.803   | 0.901 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
| Plants   | Ranunculus              |                       | 2050    | B2        | 0.803   | 0.890 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
|          | apponicus               |                       | 2080    | A1        | 0.670   | 0.780 | 1            | 0           | -2                                 | -1     | -2            | Moderate            |  |  |
|          |                         |                       | 2080    | A2        | 0.709   | 0.819 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
|          |                         |                       | 2080    | B1        | 0.770   | 0.885 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
|          |                         | -                     | 2080    | B2        | 0.745   | 0.842 | 0            | 0           | 0                                  | -1     | -1            | Low                 |  |  |
|          |                         |                       | 2050    | A1        | 0.814   | 1.233 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          |                         |                       | 2050    | A2        | 0.834   | 1.220 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
|          | 5                       |                       | 2050    | B1        | 0.835   | 1.210 | 1            | 1           | -1                                 | 0      | -1            | Low                 |  |  |
| Plants   | rupestris               |                       | 2050    | B2        | 0.822   | 1.205 | 1            | 1           | -1                                 | 0      | -1            | LOW                 |  |  |
|          | rupeotrio               |                       | 2080    | AI        | 0.546   | 1.371 | 2            | 1           | -3                                 | 1      | -3            | High                |  |  |
|          |                         |                       | 2080    |           | 0.708   | 1.442 | 1            | 1           | -1                                 | 1      | -1            | LOW                 |  |  |
|          |                         |                       | 2080    | DI<br>DO  | 0.779   | 1.349 | 1            | 1           | -1                                 | 1      | -1            | Low                 |  |  |
|          |                         | +                     | 2080    | DZ<br>A 4 | 0.722   | 1.425 | 4            | 1           | -1                                 | 1      | -1            | Moderate            |  |  |
|          |                         |                       | 2050    | A1<br>A2  | 0.000   | 1.218 | 1            | 0           | -2                                 | 1      | -2            | Moderate positive   |  |  |
|          |                         |                       | 2050    | AZ<br>D4  | 0.047   | 1.047 | 0            | 0           | 0                                  | 3      | 0             | Moderate positive   |  |  |
|          | Sigurahaium             |                       | 2050    | B1<br>D2  | 0.794   | 1.404 | 0            | 0           | 0                                  | 2      | 0             | Moderate positive   |  |  |
| Plants   | supinum                 |                       | 2000    | DZ<br>A 4 | 0.640   | 1.302 | 1            | 0           | 0                                  | 3      | 0             | Moderate positive   |  |  |
|          | o apum                  |                       | 2080    | A1<br>A2  | 0.040   | 2.04/ |              | 0           | -2                                 | 4      | -2            | Moderate positive   |  |  |
|          |                         |                       | 2000    | P1        | 0.021   | 1 765 | 0            | 0           | 0                                  | 4      | 0             | Moderate positive   |  |  |
|          |                         |                       | 2080    | B1<br>B2  | 0.733   | 1.007 | 0            | 0           | 0                                  | 4      | 0             | Moderate positive   |  |  |
| L        |                         |                       | 2080    | BZ        | 0.630   | 1.827 | U            | U           | U                                  | 4      | U             | woderate positive   |  |  |

#### Impacts of climate change and renewable energy infrastructures on EU biodiversity and Natura 2000

|          |                        |                 | MODELLED IMPACT |                  |         |       | ADAPTATION                | VULNERABILITY ASSESSMENT |         |       |                        |                              |
|----------|------------------------|-----------------|-----------------|------------------|---------|-------|---------------------------|--------------------------|---------|-------|------------------------|------------------------------|
| Order    | Species                | English<br>name | Time<br>Horizon | SRES<br>Scenario | Overlap | Ratio | General +<br>colonisation | General                  | Overlap | Ratio | Worst<br>vulnerability | Worst vulnerability category |
|          |                        |                 | 2050            | A1               | 1.000   | 1.000 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          |                        |                 | 2050            | A2               | 1.000   | 1.000 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          |                        |                 | 2050            | B1               | 1.000   | 1.000 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
| Plante   | Spergularia            |                 | 2050            | B2               | 0.857   | 1.160 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
| i ianto  | azorica                |                 | 2080            | A1               | 0.585   | 1.256 | 2                         | 1                        | -3      | 0     | -3                     | High                         |
|          |                        |                 | 2080            | A2               | 0.702   | 1.219 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          |                        |                 | 2080            | B1               | 0.785   | 1.168 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          |                        |                 | 2080            | B2               | 0.770   | 1.170 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          | Thesium<br>ebracteatum |                 | 2050            | A1               | 0.771   | 1.672 | 1                         | 1                        | -1      | 2     | -1                     | Low                          |
|          |                        |                 | 2050            | A2               | 0.800   | 1.537 | 1                         | 1                        | -1      | 2     | -1                     | Low                          |
|          |                        |                 | 2050            | B1               | 0.882   | 1.452 | 1                         | 1                        | -1      | 1     | -1                     | Low                          |
| Plante   |                        |                 | 2050            | B2               | 0.794   | 1.554 | 1                         | 1                        | -1      | 2     | -1                     | Low                          |
| Fidilits |                        |                 | 2080            | A1               | 0.602   | 1.891 | 1                         | 1                        | -2      | 3     | -2                     | Moderate                     |
|          |                        |                 | 2080            | A2               | 0.668   | 2.033 | 1                         | 1                        | -2      | 3     | -2                     | Moderate                     |
|          |                        |                 | 2080            | B1               | 0.736   | 1.662 | 1                         | 1                        | -1      | 2     | -1                     | Low                          |
|          |                        |                 | 2080            | B2               | 0.673   | 1.650 | 1                         | 1                        | -2      | 2     | -2                     | Moderate                     |
|          |                        |                 | 2050            | A1               | 0.745   | 0.923 | 1                         | 1                        | -1      | -2    | -2                     | Moderate                     |
|          |                        |                 | 2050            | A2               | 0.759   | 0.938 | 1                         | 1                        | -1      | -2    | -2                     | Moderate                     |
|          |                        |                 | 2050            | B1               | 0.777   | 0.964 | 1                         | 1                        | -1      | -2    | -2                     | Moderate                     |
| Plante   | Trichomanes            |                 | 2050            | B2               | 0.752   | 0.937 | 1                         | 1                        | -1      | -2    | -2                     | Moderate                     |
| 1 101113 | speciosum              |                 | 2080            | A1               | 0.686   | 1.103 | 1                         | 1                        | -2      | 0     | -2                     | Moderate                     |
|          |                        |                 | 2080            | A2               | 0.748   | 1.137 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          |                        |                 | 2080            | B1               | 0.835   | 1.170 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |
|          |                        |                 | 2080            | B2               | 0.765   | 1.048 | 1                         | 1                        | -1      | 0     | -1                     | Low                          |

Modelled plant data for 2050 are from Thuiller, 2004. Modelled plant data for 2080 are from Thuiller *et al.*, 2005. Climate projections for 2050 and 2080 are based on the Hadley Centre HadCM3 coupled atmosphere–ocean general circulation model using the A1F1, A2, B2 and B1 emissions scenarios.

**Overlap:** The number of squares within the intersection between the projected and simulated recent ranges divided by the number of squares in the simulated recent range.

**Ratio (remaining):** The number of UTM squares in the projected range divided by the number in the simulated recent range.

**Impact score / categories:** EC = Extremely Critical (-6), C = Critical (-5), VH = Very High (-4), H = High (-3), M = Moderate (-2), L = Low (-1); - = reduction in climate space, + = increase in climate space.



AEA group 329 Harwell Didcot Oxfordshire OX11 0QJ

Tel: +44 (0)870 190 xxxx Fax: +44 (0)870 190 xxxx