

# Sustainable biomass availability

Ben Allen

17 October 2015



# Introduction (1)

- Using biomass for energy and other aspects of the bioeconomy continues to be a major opportunity for growth, jobs and the environment.
- Moving into a new phase:
  - New technology new resource base
  - Overlapping sectoral interests and competing demands (energy, materials, services)
- Learning more about critical inter linkages around food, energy, wastes and the wider bio-based sectors.



### Introduction (2)

- Future planning requires investment certainty to take emerging technologies to commercial scale and sustain them.
- Changing political landscape
  - ILUC directive; Waste to Energy com; Circular Economy package; new biomass policy; 2030 C&E package etc.
- Key questions
  - What is the scale of the resource?
  - How can we use it sustainably?



### Why is sustainability important?

#### Sustainability:

- stable supply chain
- Safeguards from future policy change
- Establishes bioenergy's role in the bioeconomy

#### This in turn ensures

- Commercial viability
- A healthy environment and improved resource efficiency





#### Current assessments of scale

Numerous attempts to quantify availability



Huge variation in figures and units (mostly explainable)

16%

1.5mha 314mt 20mha

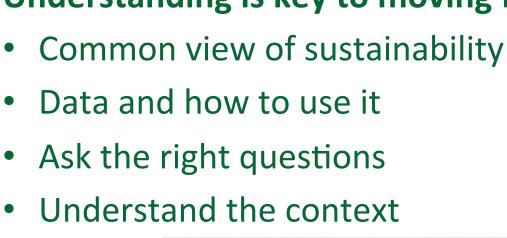
**16.7mODT** 

224mt

6,700PJ

22,700PJ




#### Why are assessments so varied?

- Objectives and parameters of study
- Differing views on sustainability
- Type and version of data used in the analysis
- Different understanding and interpretation of data
- Modeling assumptions, e.g. yield increases, waste vol.



#### New assessments

#### Understanding is key to moving forwards





# What do we mean by resource?

#### **Primary biomass Production drives** resource use

#### **Residual biomass** Resulting from biomass production + management but is not the primary output

#### Results from previous consumption or discards. does not drive production or

resource use

**Waste biomass** 



**Dedicated** energy crops



**Dedicated forest** biomass



Conventional food and feed



Algae and micro organisms



Landscape management



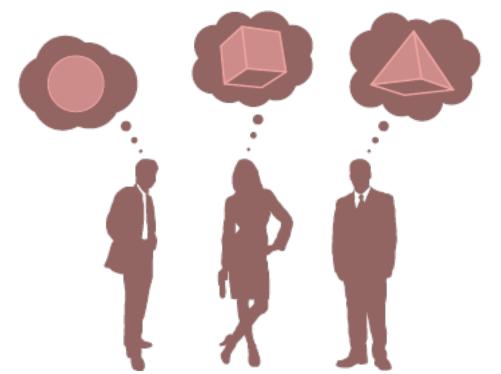
Industrial residues



Agricultural and forestry residues



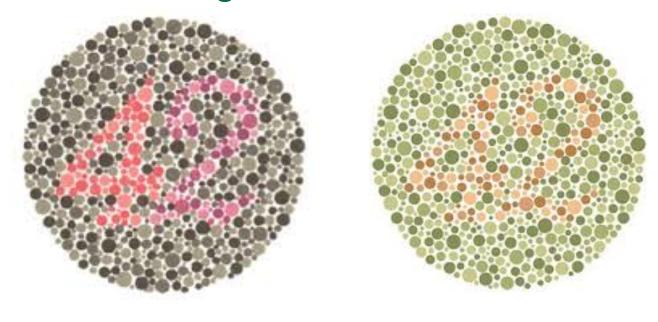
Industrial waste




Municipal waste including UCO and food waste

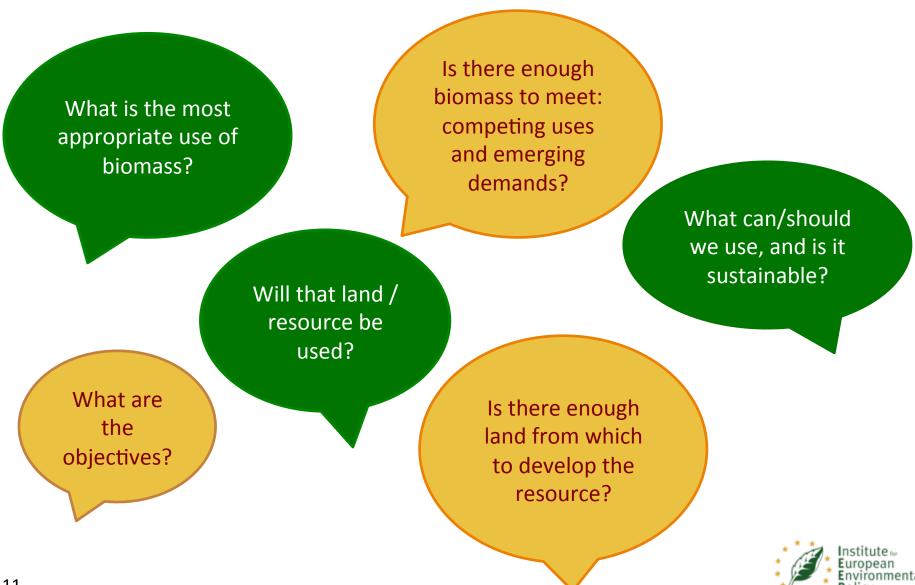


#### A common view of sustainability


- Agreement between industry and civil society
  - Improves understanding and trust
  - Helps set future trajectory for the sector
  - Establishes boundaries






### Data use and interpretation

- Does it exist and are there gaps?
- Is it subjective and what was it designed for?
- Definitions and terminology vary considerably, meaning different things to different sectors.
- Understanding what the numbers mean is critical.





### Ask the right questions



### Understand the answer - context is everything

- Agreeing on sustainability and understanding data only provides the theory.
- Decision to use and mobilise resources rests with thousands of individuals.







#### Summary

- Significant potential....
- but important to understand the <u>scale</u>
- Understand what we mean by resource
  - Agree on sustainability
  - Understand the data
  - Ask the right questions
  - Understand the context of decisions

It is possible and has been done!





# Thank you for your attention

ballen@ieep.eu

+44 (0) 20 7340 2682

www.ieep.eu

@IEEP\_eu