

Technology options for recycling agricultural, forestry and food wastes and residues for sustainable bioenergy and biomaterials

Based on a study by IEEP

12th September 2013

Part of the project 'Technology options for feeding 10 billion people' for the European Parliament (STOA)

Outline

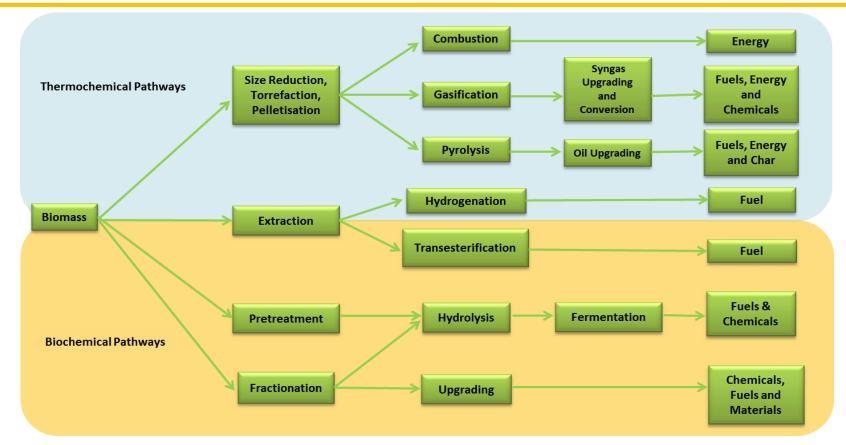
- How much material? How easy to mobilise?
- What technology? The state of EU bio-refining
- Sustainability of bio-based products
- Policy options for this sector.

Study scope

- Scope: focus on three feedstocks:
 - Food waste (excludes human sewage)
 - Agricultural crop residues: (straw, stover, excludes animal manure)
 - Primary Forestry residues: from cultivation, harvesting or logging

Waste and residue availability: summary

• Considerable potential :


 Food waste 	0.	22 EJ/yr	
 Agricultural crop residues 	0.8	to	3.60 EJ/yr
 Primary forest residues 	0.8	to	2.70 EJ/yr
– Total	1.82	to	6.52 EJ/yr
 Share of final energy consumption 	3.9%	to	14.1%

But caution!

- Crude estimates subject to big uncertainty & barriers to mobilisation
- 'Wastes' & 'residues' the wrong term? Many have existing uses.
- New uses by pushing the 'bioeconomy' adds to existing demands
- This could worsen the under-production of supporting, regulating and cultural ecosystems services, and biodiversity which underpins these bio-resources.

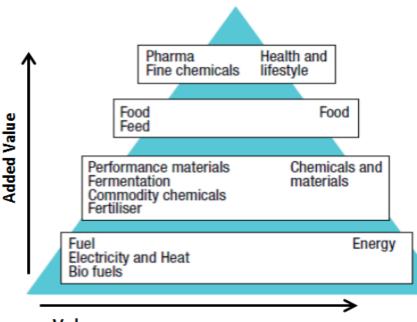
Technology options for biomass conversion

. Key factors for future development :

5

- The amount and type of feedstock available
- Market or policy driven demand for bio-based products
- investment and production decisions taken on the ground

Sustainability of bio-based products


- GHG mitigation and wider environmental benefits must be key for bioeconomy
- Controversy on biofuels means addressing and regulating sustainability upfront
- This must focus on:
 - Life Cycle Analyses (LCAs) of GHG performance
 - Impacts on soil, biodiversity and water

Resource efficient biomass use

The biomass value triangle

Volume

Source: Adapted based on Eickhout (2012) and http://www.biobasedeconomy.nl/themas/bioraffinage v2/

- Non-energy and energy uses for biomass should combine \rightarrow Cascading
- Prioritisation of waste and residue sources based on
 - lifecycle GHG savings per unit of biomass replacing fossilbased feedstocks
 - Availability of low-carbon fuel alternatives
 - Economic considerations: volumes and values

LCAs – Bio-based materials

- Some critical issues in LCAs for bio-based materials:
 - Fossil fuel comparator: Not always clear cut as bio-based building blocks can end up in a range of applications
 - Biogenic carbon storage: are bio-based products credied for delaying carbon emissions? Depending on product lifetimes.
 - *Energy use*: process energy needs can be large so its choice (eg fossil vs renewable sources) is critical
 - *Efficiency and integration of the biorefinery facility*: how much recycling of process energy & residues, & regeneration of catalysts?

Other significant environmental concerns

- Soil quality:
 - Over-extraction a real danger for soil organic matter
 - All use of W&R implies a breaking of the soil C cycle
- Biodiversity
 - Over removal of crop and forest residues a threat
 - Some potential gains; eg removal of alien invasive spp.
- Water
 - Potential savings if W&R replace crops as feedstock
 - Water consumption in processing can be a concern
- Degradable bio-based materials
 - Positive environmental opportunities here

Options to progress W&R use in bioeconomy

- 1. Help mobilise waste and residue feedstocks
- 2. Shift from demonstration to commercialisation
- 3. Ensure environmental sustainability

Mobilising waste and residue feedstocks

- Make best use of a*vailable support and advice measures* available for land managers (eg under CAP Rural Development Policy)
- Improve *food waste separation and collection* and revisit legislation on its use for anaerobic digestion
- Follow a *regional approach to biomass development* eg in siting of bioenergy or biorefinery plants

Moving from demonstration to commercialisation

- Financing for set-up of large scale demonstration or firstof-its-kind plants (some public money warranted)
- Facilitate market-driven demand for bio-based products through standards and labels for bio-based products
- Ensure a supportive and stable policy framework
 - scale back support for conventional biofuels in particular
 - consider a *Bio-resources Directive* as an integrated set of objectives and principles for the efficient use of biomass for food, energy and material use
 - introduce incentives to use end-of-life biomass for energy
 - phase out EHS for fossil fuels to promote bio-based feedstocks

Ensuring environmental sustainability

Through the introduction of *environmental safeguards*:

- Respect the waste hierarchy, 1st priority is avoid waste
- Avoid depleting soil carbon
 - Standards for biorefinery operators re soils and GHG, direct and indirect
 - Strengthen soil organic matter protection as part of the cross compliance provisions of the CAP
 - Extend the Renewable Energy Directive's GHG accounting framework to include soil carbon stock changes
 - Extend the RED's sustainability criteria to other forms of bioenergy and bio-based products

In conclusion

- Policy encouragement justified but with enhanced transparency and strong sustainability safeguards
- Bioeconomy Observatory can fulfil an important monitoring role
- Greater predictability of the environmental ground rules should be beneficial for attracting investment and ensuring the long-term viability of the sector

Institute for European Environmental Policy

IEEP's Agriculture and Land Management team:

http://www.ieep.eu/work-areas/agriculture-and-land-management/

IEEP's work on bioenergy and biofuels:

http://www.ieep.eu/work-areas/agriculture-and-land-management/bioenergy/

IEEP's website on the CAP debate:

http://www.cap2020.ieep.eu/

