Where to bee?

Different semi-natural habitats are required to sustain diverse wild bee communities

Corina Maurer

Louis Sutter, Carlos Martínez-Núñez, Loïc Pellissier, Matthias Albrecht

Farming for pollinators: unlocking economic and ecological gains 02. April 2025

Wild bees and semi-natural habitats

- Food & nesting resources
- High amounts of semi-natural habitats in landscape = many bees and species

amount of semi-natural habitat

Where to bee?

- Different habitats
- Depends on season
- Different groups of bees

Research questions

- I. What is the relative importance of different semi-natural habitat types in supporting diverse wild bee communities?
- II. Does their importance vary throughout the season and for rare (red-listed) species or crop pollinating species?
- III. How do flower richness in the habitat and the surrounding landscape influence wild bee abundance and richness in semi-natural habitats?

Q Habitat types

Hedgerow

- Native shrubs
- Incl. herbaceous border
- "biodiversity promoting area" (BPA) or not

Intensive Meadow

- Permanent
- Conventionally managed

Flower Strip

- Sown
- "Buntbrache" (flower fallow/flower strip)
- perennial

Forest Edge

Edge of deciduous or mixed forest

Extensive Meadow

- Permanent
- No fertilizer
- Mown after 15th June
- "biodiversity promoting area" (BPA)

Study design

25 landscapes

Wild bee flower visits along transects

3 sampling rounds (April, May/June, July)

■30 km

Study design

I. Relative importance of different semi-natural habitats

The different habitats sustain different bee communities

U. Different bee groups

U. Habitat importance is depending on the season

- Extensively managed meadows are important throughout the season
- Flower strips are mainly important in July

III. Flowers and landscape

- A high flower richness within habitats is key!
- Flower richness was more important than the surrounding landscape

Conclusions & implications for conservation

- Diverse wild bee communities require different types of semi-natural habitats
- Local flower richness is key!
- Flower strips in July and for crop pollinating bees
- Extensively managed meadows for rare species

Agroscope

Many thanks to...

- Lea Bona
- Stefanie Bossart
- Agricultural Landscapes & Biodiversity group at Agroscope
- VOODOO & QuESSA Projects
- SNF Swiss National Science Foundation

Appendix

Bee species	Bee group	Total abundance			
Andrena alfkenella	rare	2			
Andrena chrysosceles	crop pollinator	2	Lasioglossum	rare	26
Andrena cineraria	rare	10	glabriusculum	Tale	20
Andrena dorsata	crop pollinator	2	Lasioglossum interruptum	rare	1
Andrena flavipes	crop pollinator	23	Lasioglossum lativentre	rare	5
Andrena haemorrhoa	crop pollinator	45	Lasioglossum lineare	rare	2
Andrena hattorfiana	rare	1	Lasioglossum malachurum	crop pollinator	108
Andrena helvola	crop pollinator	1	Lasioglossum marginatum	rare	2
Andrena lathyri	rare	3	Lasioglossum nigripes	rare	7
Andrena nitida	crop pollinator	16	Lasioglossum pallens Lasioglossum parvulum	rare	2
Andrena ovatula	crop pollinator	18		rare	1
Andrena pandellei	rare	0	,		
Andrena subopaca	crop pollinator	3	Lasioglossum pauperatum	rare	1
Andrena viridescens	rare	4	Lasioglossum pauxillum	crop pollinator	41
Bombus hortorum	crop pollinator	64	Lasioglossum politum	crop pollinator	11
Bombus humilis	rare	44	Lasioglossum puncticolle	rare	1
Bombus lapidarius	crop pollinator	288	Melitta nigricans	rare	0
Bombus lucorum	crop pollinator	10			
Bombus pascuorum	crop pollinator	242			
Bombus pratorum	crop pollinator	24			
Bombus ruderatus	rare	25			
Bombus subterraneus	crop pollinator	11			
Bombus sylvarum	rare	61			
Bombus terrestris	crop pollinator	392			
Colletes cunicularius	rare	2			
Colletes similis	rare	4			
Halictus rubicundus	crop pollinator	6			
Halictus scabiosae	rare	10			
Halictus simplex	crop pollinator	11			
Halictus simplex agg	crop pollinator	17			
Halictus subauratus	rare	2			

Appendix

Identification of key plants per habitat:

- 1. 1 bee-flower network per habitat (including all 25 landscapes and 3 sampling rounds)
- 2. Calculate strength and proportional generality for each plant species (package bipartite)
- 3. Identify plants with both values of strength and proportional generality >= 80% quantile (per habitat)

Strength: sum of dependencies of a species (for plants: sum of number of bee species) (Bascompte et al. 2006)

Proportional generality: the number of partner species in relation to the potential number of partner species

Package bipartite: Dormann et al. 2021

!!! All analyses without honeybees !!!

Appendix: Key plants extensive meadows

Appendix: Key plants flower strip

O

Appendix: key plants hedgerow

U Study sites

Overview Study Sites VOODOO and QUESSA

Exportdatum 28/05/2021 08:38

Projektion: Hotine Oblique Mercator Azimuth

Center

Species-habitat networks

Estimated wild bee richness

O

II. Habitat importance is depending on the season

Sampling round

Dominant crop pollinators and rare species

Coverage-based rarefaction curves

III. Drivers of β -diversity among habitats

Safeguarding European wild pollinators

Environmental benefits of pollinator-friendly land management

Andree Cappellari, Lorenzo Marini (University of Padova, Italy)

Forum for Agriculture, Brussels, 02/04/2025

Pollinators and pollination

- Key part of biodiversity
- 70% of leading global food crops is dependent upon animal pollination (35% of global food production)
- Better yields, better quality

Ecosystem services

Benefits that humans derive from ecosystems

Relationships among ecosystem services:

• Co-benefits: +

• Trade-offs: -

Pollinator-friendly areas in agricultural landscapes

- High flower cover and diversity
- Reduced pesticide use
- Specific habitats

Does this also reflect on other ecosystem services?

Why is it important to study co-benefits?

Support multifunctional landscapes, balancing conservation and production Maximize co-benefits and minimize trade-offs!

Farmers

- Boost crop yields, reduce pesticide use, improve soil and water health
- Manage field margins without losing productive land

Land managers & advisors

- Identify high-impact habitats to prioritize
- Promote cost-effective conservation actions

...but only a few studies

Our study: Aims and key questions

Promote pollination and other ecosystem services in agricultural landscapes

- 1) What is the role of semi-natural patches, crop field margins, and urban green areas, in supporting both wild pollinators and other ecosystem services?
- 2) Does improving local conditions for pollinators, *i.e.*, increasing **flower cover and diversity**, also boost other ecosystem services?

Our study: Sampling sites

Flower cover and diversity gradient

Our study: Ecosystem services

Results - Pollinators and habitats

Higher number of pollinator species in crop field margins and semi-natural patches

77 species

59 species

Results - Other ecosystem services and habitats

Semi-natural patches and crop field margins supported multiple ecosystem services

Results – Pollinators and flowers

Results - Other ecosystem services and flowers

Increasing flower cover benefits pollinators, but it doesn't guarantee a higher provision of other ecosystem services

No one-size-fits-all!

Take-home messages

Environmental benefits: Pollinator-friendly areas could do more than just help bees!

- Support both pollinators and pest predators
- Great benefits with minimal land use
- High-value strategy for farms

Semi-natural patch

- Support biodiversity
- Maximized co-benefits

Good for awareness, but less for ecological functions

Thank you!

Andree Cappellari

andree.cappellari@unipd.it

